Apollo Register Documentation  v${version}
ITM - ARM ITM Registers.

ITM Register Index

  0xE0000000:   STIM0 - Stimulus Port Register 0
  0xE0000004:   STIM1 - Stimulus Port Register 1
  0xE0000008:   STIM2 - Stimulus Port Register 2
  0xE000000C:   STIM3 - Stimulus Port Register 3
  0xE0000010:   STIM4 - Stimulus Port Register 4
  0xE0000014:   STIM5 - Stimulus Port Register 5
  0xE0000018:   STIM6 - Stimulus Port Register 6
  0xE000001C:   STIM7 - Stimulus Port Register 7
  0xE0000020:   STIM8 - Stimulus Port Register 8
  0xE0000024:   STIM9 - Stimulus Port Register 9
  0xE0000028:   STIM10 - Stimulus Port Register 10
  0xE000002C:   STIM11 - Stimulus Port Register 11
  0xE0000030:   STIM12 - Stimulus Port Register 12
  0xE0000034:   STIM13 - Stimulus Port Register 13
  0xE0000038:   STIM14 - Stimulus Port Register 14
  0xE000003C:   STIM15 - Stimulus Port Register 15
  0xE0000040:   STIM16 - Stimulus Port Register 16
  0xE0000044:   STIM17 - Stimulus Port Register 17
  0xE0000048:   STIM18 - Stimulus Port Register 18
  0xE000004C:   STIM19 - Stimulus Port Register 19
  0xE0000050:   STIM20 - Stimulus Port Register 20
  0xE0000054:   STIM21 - Stimulus Port Register 21
  0xE0000058:   STIM22 - Stimulus Port Register 22
  0xE000005C:   STIM23 - Stimulus Port Register 23
  0xE0000060:   STIM24 - Stimulus Port Register 24
  0xE0000064:   STIM25 - Stimulus Port Register 25
  0xE0000068:   STIM26 - Stimulus Port Register 26
  0xE000006C:   STIM27 - Stimulus Port Register 27
  0xE0000070:   STIM28 - Stimulus Port Register 28
  0xE0000074:   STIM29 - Stimulus Port Register 29
  0xE0000078:   STIM30 - Stimulus Port Register 30
  0xE000007C:   STIM31 - Stimulus Port Register 31
  0xE0000E00:   TER - Trace Enable Register.
  0xE0000E40:   TPR - Trace Privilege Register.
  0xE0000E80:   TCR - Trace Control Register.
  0xE0000FB0:   LOCKAREG - Lock Access Register
  0xE0000FB4:   LOCKSREG - Lock Status Register
  0xE0000FD0:   PID4 - Peripheral Identification Register 4
  0xE0000FD4:   PID5 - Peripheral Identification Register 5
  0xE0000FD8:   PID6 - Peripheral Identification Register 6
  0xE0000FDC:   PID7 - Peripheral Identification Register 7
  0xE0000FE0:   PID0 - Peripheral Identification Register 0
  0xE0000FE4:   PID1 - Peripheral Identification Register 1
  0xE0000FE8:   PID2 - Peripheral Identification Register 2
  0xE0000FEC:   PID3 - Peripheral Identification Register 3
  0xE0000FF0:   CID0 - Component Identification Register 1
  0xE0000FF4:   CID1 - Component Identification Register 1
  0xE0000FF8:   CID2 - Component Identification Register 2
  0xE0000FFC:   CID3 - Component Identification Register 3

STIM0 - Stimulus Port Register 0

Address:

  Instance 0 Address:   0xE0000000

Description:

Stimulus Port Register 0

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM0
0x0

Bits Name RW Description
31:0 STIM0 RW Stimulus Port Register 0.


STIM1 - Stimulus Port Register 1

Address:

  Instance 0 Address:   0xE0000004

Description:

Stimulus Port Register 1

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM1
0x0

Bits Name RW Description
31:0 STIM1 RW Stimulus Port Register 1.


STIM2 - Stimulus Port Register 2

Address:

  Instance 0 Address:   0xE0000008

Description:

Stimulus Port Register 2

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM2
0x0

Bits Name RW Description
31:0 STIM2 RW Stimulus Port Register 2.


STIM3 - Stimulus Port Register 3

Address:

  Instance 0 Address:   0xE000000C

Description:

Stimulus Port Register 3

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM3
0x0

Bits Name RW Description
31:0 STIM3 RW Stimulus Port Register 3.


STIM4 - Stimulus Port Register 4

Address:

  Instance 0 Address:   0xE0000010

Description:

Stimulus Port Register 4

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM4
0x0

Bits Name RW Description
31:0 STIM4 RW Stimulus Port Register 4.


STIM5 - Stimulus Port Register 5

Address:

  Instance 0 Address:   0xE0000014

Description:

Stimulus Port Register 5

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM5
0x0

Bits Name RW Description
31:0 STIM5 RW Stimulus Port Register 5.


STIM6 - Stimulus Port Register 6

Address:

  Instance 0 Address:   0xE0000018

Description:

Stimulus Port Register 6

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM6
0x0

Bits Name RW Description
31:0 STIM6 RW Stimulus Port Register 6.


STIM7 - Stimulus Port Register 7

Address:

  Instance 0 Address:   0xE000001C

Description:

Stimulus Port Register 7

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM7
0x0

Bits Name RW Description
31:0 STIM7 RW Stimulus Port Register 7.


STIM8 - Stimulus Port Register 8

Address:

  Instance 0 Address:   0xE0000020

Description:

Stimulus Port Register 8

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM8
0x0

Bits Name RW Description
31:0 STIM8 RW Stimulus Port Register 8.


STIM9 - Stimulus Port Register 9

Address:

  Instance 0 Address:   0xE0000024

Description:

Stimulus Port Register 9

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM9
0x0

Bits Name RW Description
31:0 STIM9 RW Stimulus Port Register 9.


STIM10 - Stimulus Port Register 10

Address:

  Instance 0 Address:   0xE0000028

Description:

Stimulus Port Register 10

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM10
0x0

Bits Name RW Description
31:0 STIM10 RW Stimulus Port Register 10.


STIM11 - Stimulus Port Register 11

Address:

  Instance 0 Address:   0xE000002C

Description:

Stimulus Port Register 11

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM11
0x0

Bits Name RW Description
31:0 STIM11 RW Stimulus Port Register 11.


STIM12 - Stimulus Port Register 12

Address:

  Instance 0 Address:   0xE0000030

Description:

Stimulus Port Register 12

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM12
0x0

Bits Name RW Description
31:0 STIM12 RW Stimulus Port Register 12.


STIM13 - Stimulus Port Register 13

Address:

  Instance 0 Address:   0xE0000034

Description:

Stimulus Port Register 13

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM13
0x0

Bits Name RW Description
31:0 STIM13 RW Stimulus Port Register 13.


STIM14 - Stimulus Port Register 14

Address:

  Instance 0 Address:   0xE0000038

Description:

Stimulus Port Register 14

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM14
0x0

Bits Name RW Description
31:0 STIM14 RW Stimulus Port Register 14.


STIM15 - Stimulus Port Register 15

Address:

  Instance 0 Address:   0xE000003C

Description:

Stimulus Port Register 15

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM15
0x0

Bits Name RW Description
31:0 STIM15 RW Stimulus Port Register 15.


STIM16 - Stimulus Port Register 16

Address:

  Instance 0 Address:   0xE0000040

Description:

Stimulus Port Register 16

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM16
0x0

Bits Name RW Description
31:0 STIM16 RW Stimulus Port Register 16.


STIM17 - Stimulus Port Register 17

Address:

  Instance 0 Address:   0xE0000044

Description:

Stimulus Port Register 17

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM17
0x0

Bits Name RW Description
31:0 STIM17 RW Stimulus Port Register 17.


STIM18 - Stimulus Port Register 18

Address:

  Instance 0 Address:   0xE0000048

Description:

Stimulus Port Register 18

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM18
0x0

Bits Name RW Description
31:0 STIM18 RW Stimulus Port Register 18.


STIM19 - Stimulus Port Register 19

Address:

  Instance 0 Address:   0xE000004C

Description:

Stimulus Port Register 19

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM19
0x0

Bits Name RW Description
31:0 STIM19 RW Stimulus Port Register 19.


STIM20 - Stimulus Port Register 20

Address:

  Instance 0 Address:   0xE0000050

Description:

Stimulus Port Register 20

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM20
0x0

Bits Name RW Description
31:0 STIM20 RW Stimulus Port Register 20.


STIM21 - Stimulus Port Register 21

Address:

  Instance 0 Address:   0xE0000054

Description:

Stimulus Port Register 21

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM21
0x0

Bits Name RW Description
31:0 STIM21 RW Stimulus Port Register 21.


STIM22 - Stimulus Port Register 22

Address:

  Instance 0 Address:   0xE0000058

Description:

Stimulus Port Register 22

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM22
0x0

Bits Name RW Description
31:0 STIM22 RW Stimulus Port Register 22.


STIM23 - Stimulus Port Register 23

Address:

  Instance 0 Address:   0xE000005C

Description:

Stimulus Port Register 23

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM23
0x0

Bits Name RW Description
31:0 STIM23 RW Stimulus Port Register 23.


STIM24 - Stimulus Port Register 24

Address:

  Instance 0 Address:   0xE0000060

Description:

Stimulus Port Register 24

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM24
0x0

Bits Name RW Description
31:0 STIM24 RW Stimulus Port Register 24.


STIM25 - Stimulus Port Register 25

Address:

  Instance 0 Address:   0xE0000064

Description:

Stimulus Port Register 25

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM25
0x0

Bits Name RW Description
31:0 STIM25 RW Stimulus Port Register 25.


STIM26 - Stimulus Port Register 26

Address:

  Instance 0 Address:   0xE0000068

Description:

Stimulus Port Register 26

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM26
0x0

Bits Name RW Description
31:0 STIM26 RW Stimulus Port Register 26.


STIM27 - Stimulus Port Register 27

Address:

  Instance 0 Address:   0xE000006C

Description:

Stimulus Port Register 27

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM27
0x0

Bits Name RW Description
31:0 STIM27 RW Stimulus Port Register 27.


STIM28 - Stimulus Port Register 28

Address:

  Instance 0 Address:   0xE0000070

Description:

Stimulus Port Register 28

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM28
0x0

Bits Name RW Description
31:0 STIM28 RW Stimulus Port Register 28.


STIM29 - Stimulus Port Register 29

Address:

  Instance 0 Address:   0xE0000074

Description:

Stimulus Port Register 29

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM29
0x0

Bits Name RW Description
31:0 STIM29 RW Stimulus Port Register 29.


STIM30 - Stimulus Port Register 30

Address:

  Instance 0 Address:   0xE0000078

Description:

Stimulus Port Register 30

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM30
0x0

Bits Name RW Description
31:0 STIM30 RW Stimulus Port Register 30.


STIM31 - Stimulus Port Register 31

Address:

  Instance 0 Address:   0xE000007C

Description:

Stimulus Port Register 31

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIM31
0x0

Bits Name RW Description
31:0 STIM31 RW Stimulus Port Register 31.


TER - Trace Enable Register.

Address:

  Instance 0 Address:   0xE0000E00

Description:

Trace Enable Register.

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STIMENA
0x0

Bits Name RW Description
31:0 STIMENA RW Bit mask to enable tracing on ITM stimulus ports. One bit per stimulus port..


TPR - Trace Privilege Register.

Address:

  Instance 0 Address:   0xE0000E40

Description:

Trace Privilege Register.

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD
0x0
PRIVMASK
0x0

Bits Name RW Description
31:4 RSVD RO RESERVED.

3:0 PRIVMASK RW Bit mask to enable tracing on ITM stimulus ports. bit[0] = stimulus ports[7:0], bit[1] = stimulus ports[15:8], bit[2] = stimulus ports[23:16], bit[3] = stimulus ports[31:24].


TCR - Trace Control Register.

Address:

  Instance 0 Address:   0xE0000E80

Description:

Trace Control Register.

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD
0x0
BUSY
0x0
ATB_ID
0x0
RSVD
0x0
TS_FREQ
0x0
TS_PRESCALE
0x0
RSVD
0x0
SWV_ENABLE
0x0
DWT_ENABLE
0x0
SYNC_ENABLE
0x0
TS_ENABLE
0x0
ITM_ENABLE
0x0

Bits Name RW Description
31:24 RSVD RO RESERVED.

23 BUSY RW Set when ITM events present and being drained.

22:16 ATB_ID RW ATB ID for CoreSight system.

15:12 RSVD RO RESERVED.

11:10 TS_FREQ RW Global Timestamp Frequency.

9:8 TS_PRESCALE RW Timestamp prescaler: 0b00 = no prescaling 0b01 = divide by 4 0b10 = divide by 16 0b11 = divide by 64.

7:5 RSVD RO RESERVED.

4 SWV_ENABLE RW Enable SWV (Serial Wire Viewer) behavior - count on TPIUEMIT and TPIUBAUD: Aka SWOENA Enables asynchronous clocking of the timestamp counter.

3 DWT_ENABLE RW Enables the DWT stimulus.

2 SYNC_ENABLE RW Enables sync packets for TPIU.

1 TS_ENABLE RW Enables differential timestamps. Differential timestamps are emitted when a packet is written to the FIFO with a non-zero timestamp counter, and when the timestamp counter overflows. Timestamps are emitted during idle times after a fixed number of cycles. This provides a time reference for packets and inter-packet gaps.

0 ITM_ENABLE RW Enable ITM. This is the master enable, and must be set before ITM Stimulus and Trace Enable registers can be written.


LOCKAREG - Lock Access Register

Address:

  Instance 0 Address:   0xE0000FB0

Description:

Lock Access Register

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LOCKAREG
0x0

Bits Name RW Description
31:0 LOCKAREG RW Key register value.

Key = 0xC5ACCE55 - Key value to unlock the register.

LOCKSREG - Lock Status Register

Address:

  Instance 0 Address:   0xE0000FB4

Description:

Lock Status Register

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD
0x0
BYTEACC
0x0
ACCESS
0x0
PRESENT
0x1

Bits Name RW Description
31:3 RSVD RO RESERVED.

2 BYTEACC RO You cannot implement 8-bit lock accesses.

1 ACCESS RO Write access to component is blocked. All writes are ignored, reads are permitted.

0 PRESENT RO Indicates that a lock mechanism exists for this component.


PID4 - Peripheral Identification Register 4

Address:

  Instance 0 Address:   0xE0000FD0

Description:

Peripheral Identification Register 4

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PID4
0x4

Bits Name RW Description
31:0 PID4 R0 Peripheral Identification 4.


PID5 - Peripheral Identification Register 5

Address:

  Instance 0 Address:   0xE0000FD4

Description:

Peripheral Identification Register 5

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PID5
0x0

Bits Name RW Description
31:0 PID5 R0 Peripheral Identification 5.


PID6 - Peripheral Identification Register 6

Address:

  Instance 0 Address:   0xE0000FD8

Description:

Peripheral Identification Register 6

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PID6
0x0

Bits Name RW Description
31:0 PID6 R0 Peripheral Identification 6.


PID7 - Peripheral Identification Register 7

Address:

  Instance 0 Address:   0xE0000FDC

Description:

Peripheral Identification Register 7

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PID7
0x0

Bits Name RW Description
31:0 PID7 R0 Peripheral Identification 7.


PID0 - Peripheral Identification Register 0

Address:

  Instance 0 Address:   0xE0000FE0

Description:

Peripheral Identification Register 0

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PID0
0x1

Bits Name RW Description
31:0 PID0 R0 Peripheral Identification 0.


PID1 - Peripheral Identification Register 1

Address:

  Instance 0 Address:   0xE0000FE4

Description:

Peripheral Identification Register 1

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PID1
0xb0

Bits Name RW Description
31:0 PID1 R0 Peripheral Identification 1.


PID2 - Peripheral Identification Register 2

Address:

  Instance 0 Address:   0xE0000FE8

Description:

Peripheral Identification Register 2

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PID2
0x3b

Bits Name RW Description
31:0 PID2 R0 Peripheral Identification 2.


PID3 - Peripheral Identification Register 3

Address:

  Instance 0 Address:   0xE0000FEC

Description:

Peripheral Identification Register 3

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PID3
0x0

Bits Name RW Description
31:0 PID3 R0 Peripheral Identification 3.


CID0 - Component Identification Register 1

Address:

  Instance 0 Address:   0xE0000FF0

Description:

Component Identification Register 1

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CID0
0xd

Bits Name RW Description
31:0 CID0 R0 Component Identification 1.


CID1 - Component Identification Register 1

Address:

  Instance 0 Address:   0xE0000FF4

Description:

Component Identification Register 1

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CID1
0xe0

Bits Name RW Description
31:0 CID1 R0 Component Identification 1.


CID2 - Component Identification Register 2

Address:

  Instance 0 Address:   0xE0000FF8

Description:

Component Identification Register 2

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CID2
0x5

Bits Name RW Description
31:0 CID2 R0 Component Identification 2.


CID3 - Component Identification Register 3

Address:

  Instance 0 Address:   0xE0000FFC

Description:

Component Identification Register 3

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CID3
0xb1

Bits Name RW Description
31:0 CID3 R0 Component Identification 3.