
Apollo4 Family OEM Provisioning,
Update, and Tools
Ultra-Low Power Apollo SoC Family
A-SOCAP4-UGGA01EN v1.6

USER’S GUIDE

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide

A-SOCAP4-UGGA01EN v1.6 2

Legal Information and Disclaimers

AMBIQ MICRO INTENDS FOR THE CONTENT CONTAINED IN THE DOCUMENT TO BE ACCURATE AND RELIABLE. THIS
CONTENT MAY, HOWEVER, CONTAIN TECHNICAL INACCURACIES, TYPOGRAPHICAL ERRORS OR OTHER MISTAKES.
AMBIQ MICRO MAY MAKE CORRECTIONS OR OTHER CHANGES TO THIS CONTENT AT ANY TIME. AMBIQ MICRO
AND ITS SUPPLIERS RESERVE THE RIGHT TO MAKE CORRECTIONS, MODIFICATIONS, ENHANCEMENTS,
IMPROVEMENTS AND OTHER CHANGES TO ITS PRODUCTS, PROGRAMS AND SERVICES AT ANY TIME OR TO
DISCONTINUE ANY PRODUCTS, PROGRAMS, OR SERVICES WITHOUT NOTICE.

THE CONTENT IN THIS DOCUMENT IS PROVIDED "AS IS". AMBIQ MICRO AND ITS RESPECTIVE SUPPLIERS MAKE NO
REPRESENTATIONS ABOUT THE SUITABILITY OF THIS CONTENT FOR ANY PURPOSE AND DISCLAIM ALL
WARRANTIES AND CONDITIONS WITH REGARD TO THIS CONTENT, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED
WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-
INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHT.

AMBIQ MICRO DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED
UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT OF
AMBIQ MICRO COVERING OR RELATING TO THIS CONTENT OR ANY COMBINATION, MACHINE, OR PROCESS TO
WHICH THIS CONTENT RELATE OR WITH WHICH THIS CONTENT MAY BE USED.

USE OF THE INFORMATION IN THIS DOCUMENT MAY REQUIRE A LICENSE FROM A THIRD PARTY UNDER THE
PATENTS OR OTHER INTELLECTUAL PROPERTY OF THAT THIRD PARTY, OR A LICENSE FROM AMBIQ MICRO UNDER
THE PATENTS OR OTHER INTELLECTUAL PROPERTY OF AMBIQ MICRO.

INFORMATION IN THIS DOCUMENT IS PROVIDED SOLELY TO ENABLE SYSTEM AND SOFTWARE IMPLEMENTERS TO
USE AMBIQ MICRO PRODUCTS. THERE ARE NO EXPRESS OR IMPLIED COPYRIGHT LICENSES GRANTED HEREUNDER
TO DESIGN OR FABRICATE ANY INTEGRATED CIRCUITS OR INTEGRATED CIRCUITS BASED ON THE INFORMATION IN
THIS DOCUMENT. AMBIQ MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN. AMBIQ MICRO MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING THE
SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR DOES AMBIQ MICRO ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT, AND SPECIFICALLY DISCLAIMS ANY
AND ALL LIABILITY, INCLUDING WITHOUT LIMITATION CONSEQUENTIAL OR INCIDENTAL DAMAGES. “TYPICAL”
PARAMETERS WHICH MAY BE PROVIDED IN AMBIQ MICRO DATA SHEETS AND/OR SPECIFICATIONS CAN AND DO
VARY IN DIFFERENT APPLICATIONS AND ACTUAL PERFORMANCE MAY VARY OVER TIME. ALL OPERATING
PARAMETERS, INCLUDING “TYPICALS” MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY CUSTOMER’S
TECHNICAL EXPERTS. AMBIQ MICRO DOES NOT CONVEY ANY LICENSE UNDER NEITHER ITS PATENT RIGHTS NOR
THE RIGHTS OF OTHERS. AMBIQ MICRO PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS
COMPONENTS IN SYSTEMS INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER APPLICATIONS
INTENDED TO SUPPORT OR SUSTAIN LIFE, OR FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE
AMBIQ MICRO PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
SHOULD BUYER PURCHASE OR USE AMBIQ MICRO PRODUCTS FOR ANY SUCH UNINTENDED OR UNAUTHORIZED
APPLICATION, BUYER SHALL INDEMNIFY AND HOLD AMBIQ MICRO AND ITS OFFICERS, EMPLOYEES, SUBSIDIARIES,
AFFILIATES, AND DISTRIBUTORS HARMLESS AGAINST ALL CLAIMS, COSTS, DAMAGES, AND EXPENSES, AND
REASONABLE ATTORNEY FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PERSONAL INJURY OR
DEATH ASSOCIATED WITH SUCH UNINTENDED OR UNAUTHORIZED USE, EVEN IF SUCH CLAIM ALLEGES THAT
AMBIQ MICRO WAS NEGLIGENT REGARDING THE DESIGN OR MANUFACTURE OF THE PART.

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide

A-SOCAP4-UGGA01EN v1.6 3

Revision History

Reference Documents

Revision Date Description

1.0 October 10, 2020 Initial Release.

1.1 October 13, 2020 Added Debug Certificate chain picture.

1.2 October 22, 2020 Added OEM Asset Generation tool information.

1.3 December 21, 2020 Added new note in section 1 Introduction.
Updated Content Certificate generation details in section 3.5
OEM Content Certificate Gen.

1.4 November 19, 2021 Updated document template
Added new content in section 1.1 System Requirements
Added new section 2 Keys
Updated section 3 OEM Provisioning
Added new section 4 Customer Infospace Provisioning (INFO0)
Updated section 5 OEM Image Certificate Generation
Added new section 7 Image Generation for Apollo4 SBL
Added new section 8 Downloading Images and Initiating

Updates Through SBL
Added new section 9 UART Wired Update
Added new section 10Wired Download Procedure

1.5 October 19, 2022 Updated document template

1.6 July 5, 2023 Updated document title and section 1 Introduction

Document ID Description

A-SOCAP4-WPNA01EN Apollo4 and Apollo4 Blue SoC Security Features White Paper

A-SOCAP4-UGGA02EN Apollo4 Family Secure Update User’s Guide

Apollo4 and Apollo4 Blue Secure Bootloader Scripts User’s Guide

Apollo4 and Apollo4 Blue Getting Started Guide

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Table of Contents

A-SOCAP4-UGGA01EN v1.6 4

Table of Contents

1. Introduction ... 9
1.1 System Requirements .. 9
1.2 Terminology .. 9

2. Keys ... 10
2.1 Key Gen Utility .. 11

2.1.1 Input Parameters ... 11
2.1.2 Key Gen Command ... 11

3. OEM Provisioning .. 12
3.1 HBK Gen Utility .. 13

3.1.1 Input Parameters ... 13
3.1.2 HBK Gen Command .. 13

3.2 OEM Key Request Utility .. 13
3.2.1 Input Parameters ... 13
3.2.2 OEM Key Request Command .. 14

3.3 OEM Asset Packaging Utility .. 14
3.3.1 Input Parameters ... 14
3.3.2 Command(s) For Asset(s) Generation .. 14

3.4 OEM Asset Gen Util ... 15
3.4.1 Input Parameters ... 15
3.4.2 Tool Execution .. 15

3.5 OEM Provisioning Data Gen Util .. 16
3.5.1 Input Parameters ... 16
3.5.2 Tool Execution .. 16

3.6 OEM Provisioning Tool (OPT) .. 16

4. Customer Infospace Provisioning (INFO0) ... 18
4.1 Info0 Generation .. 18
4.2 Info0 Programming ... 19

5. OEM Image Certificate Generation ... 20
5.1 Prerequisite .. 20
5.2 Note on the Tool Output Files ... 20
5.3 OEM Root Certificate Gen ... 21

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Table of Contents

A-SOCAP4-UGGA01EN v1.6 5

5.3.1 Input Parameters ... 21
5.3.2 OEM Root Cert Gen Command ... 21

5.4 OEM Key Certificate Gen ... 21
5.4.1 Input Parameters ... 21
5.4.2 OEM Key Certificate Gen Command ... 22

5.5 OEM Content Certificate Gen .. 22
5.5.1 Input Parameters ... 22
5.5.2 OEM Content Certificate Gen Command .. 23

6. OEM Debug Certificate Generation .. 24
6.1 OEM Debug-Key Certificate Gen .. 25

6.1.1 Input Parameters ... 25
6.1.2 OEM Debug-Key Gen Command ... 25

6.2 OEM Debug Enabler Certificate Gen .. 25
6.2.1 Input Parameters ... 26
6.2.2 OEM Debug Enabler Certificate Gen Command .. 26

6.3 OEM Debug Developer Certificate Gen ... 26
6.3.1 Input Parameters ... 26
6.3.2 OEM Debug Developer Certificate Gen Command ... 26

7. Image Generation for Apollo4 SBL ... 28
7.1 Overview of Image Types ... 28

7.1.1 Firmware ... 28
7.1.2 Firmware OTA ... 29
7.1.3 Wired Download .. 29
7.1.4 Wired OTA .. 30
7.1.5 Summary ... 31

7.2 Image Generation Scripts ... 32
7.2.1 Basic Script Usage .. 32
7.2.2 Example Configuration File .. 33
7.2.3 Universal Security Options ... 34

7.3 Generating Specific Image Types .. 35
7.3.1 Firmware OTA Images .. 35
7.3.2 Wired Download Images .. 35
7.3.3 Info0 Update Images .. 36
7.3.4 OEM Certificate Chain Update .. 36
7.3.5 Key Revocation Images .. 36

8. Downloading Images and Initiating Updates 37
8.1 SWD Download Using JLINK .. 37
8.2 Wired Update .. 38

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Table of Contents

A-SOCAP4-UGGA01EN v1.6 6

8.3 Over the Air Updates .. 38

9. UART Wired Update ... 40
9.1 Upgrading Multiple Images in One Step .. 41
9.2 Upgrading Large Binary (Using --wired-chunk-size feature) ... 41

10. Wired Download Procedure .. 43
10.1 Using Wired Download for OTA ... 43

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide

A-SOCAP4-UGGA01EN v1.6 7

List of Tables

Table 1-1 Terminology .. 9

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide

A-SOCAP4-UGGA01EN v1.6 8

List of Figures

Figure 3-1 General Flow for OEM Security Asset Generation .. 12
Figure 5-1 OEM Certificate Generation ... 20
Figure 6-1 OEM Debug Certificates .. 24
Figure 7-1 Firmware ... 28
Figure 7-2 Firmware OTA ... 29
Figure 7-3 Wired Download .. 30
Figure 7-4 Wired OTA .. 31
Figure 7-5 Wired OTA - Step 2 .. 31
Figure 7-6 Relationship Summary ... 32

9 A-SOCAP4-UGGA01EN v1.6

SECTION

1 Introduction

This document provides an overview of the OEM provisioning process, initial configuration,
and run time updates for the Apollo4 Family SoC and the details of the tools required for the
same. References to Apollo4 refers to the Apollo4 Family, unless explicitly stated otherwise.

1.1 System Requirements

The provisioning tools are designed to run on a Linux host machine with the fol-
lowing requirements:
Linux – Kernel Version 4.15.0 – 107-generic (Ubuntu 16.04.2).
OpenSSL – 1.0.2g
Python – 3.5.2

– pyserial – Required for uart_wired_update.py
– pycryptodome – Required for certain encrypted or signed image formats.

1.2 Terminology
This section defines some of the terminologies used in this document.

NOTE: Unless specifically noted, all the tools mentioned below are included in the
AmbiqSuite SDK release under directory tools/apollo4b_scripts/ for Apollo4 and
Apollo4 Plus, or tools/apollo4l_scripts/ for Apollo4 Lite.

Table 1-1: Terminology

Abbreviation Definition

ICV Integrated Circuit Vendor
DM LCS Device Manufacturer Life Cycle State

OEM Original Equipment Manufacturer
RoT Root of Trust
RMA Returned Merchandise Authorization

10 A-SOCAP4-UGGA01EN v1.6

SECTION

2 Keys

The Apollo4 Security infrastructure relies on a number of asymmetric and symmetric keys for
variety of purpose, ranging from creating a Root of Trust, to using asymmetric keys for Authen-
tication, and symmetric keys for various encryption needs.

Signing Keys

The Apollo4 uses Asymmetric PKA for establishing authenticity of images as well as the
updates.

A Secureboot enabled part requires a certificate chain for successful boot. The chain itself
contains three certificates, each with a Public Key, with the root certificate binding to the
OTP Root of Trust. Images/certificates are signed using the corresponding Private Keys.
Key assets are maintained as Password encrypted .pem files.

Encryption Keys

The Apollo4 uses Symmetric AES-CTR encryption for code confidentiality. Symmetric key
based AES-CMAC is also used to add authentication and encryption to provisioning infor-
mation during manufacturing as well.

OEMs can program their desired AES keys into OTP during the OEM provisioning process.
Specifically, OEMs program the Apollo4 with a couple of hardware keys Kcp, a Kce, and a
bank of additional AES keys (known as the keybank) in the OTP.

Key Generation

While the OEM may have their own key server to generate the key assets (e.g. HSM), Ambiq-
Suite SDK provides simple utilities that can be used to generate most of them as well.

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Keys

11 A-SOCAP4-UGGA01EN v1.6

2.1 Key Gen Utility

The Key Gen Utility is used to generate all the keys required for OEM secrets provi-
sioning at the device manufacturing. The following python utility can be used to
generate the keys.

./oem_tools_pkg/am_oem_key_gen_util/am_oem_key_gen_util.py

2.1.1 Input Parameters

The inputs to the Key Gen Utility are provided through the configuration file as a
command-line parameter. The inputs configured in the configuration file is
described in the example config file itself at the following location

./oem_tools_pkg/am_oem_key_gen_util/oemKeyGenConfig.cfg

2.1.2 Key Gen Command

The following are the Key Gen Command:

./oem_tools_pkg/am_oem_key_gen_util/$
python am_oem_key_gen_util.py ./oemKeyGenConfig.cfg

At successful execution, the Key Gen Utility should create the following two folders
containing all the required symmetric and asymmetric keys for OTP provisioning. It
also generates the asymmetric keys for OEM certificate chain and debug/RMA cer-
tificates.

./oem_tools_pkg/am_oem_key_gen_util/oemAesKeys

./oem_tools_pkg/am_oem_key_gen_util/oemRsaKeys

The keybank keys need to be generated separately.

12 A-SOCAP4-UGGA01EN v1.6

SECTION

3 OEM Provisioning

OEM provisioning is the process of creating digital security assets in a form that is suitable for
the customer’s device production flow. Security assets include OEM symmetric keys, Root of
Trust, and any security sensitive data provisioned to OTP at the time of device manufacturing.

Figure 3-1 shows the general flow for OEM security asset generation for the Apollo4 Family. The
following sections outline the operation of the tools within each of blocks.

Figure 3-1: General Flow for OEM Security Asset Generation

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide OEM Provisioning

13 A-SOCAP4-UGGA01EN v1.6

3.1 HBK Gen Utility

The HBK Gen Utility generates the Root Of Trust for the OEM (HBK 1).

./oem_tools_pkg/cert_utils/am_hbk_gen/am_hbk_gen_util.py

3.1.1 Input Parameters

The parameters to the HBK Gen Util are command-line parameters as shown
below.

python am_hbk_gen_util.py -key <path to the OEM Root Public key> -
endian <B | L> -hash_format <SHA256 | SHA256_TRUNC >

3.1.2 HBK Gen Command

The command below will generate the truncated hash of the OEM Root Certificate
Public key.

./oem_tools_pkg/cert_utils/am_hbk_gen/$

python am_hbk_gen_util.py -key ../../am_oem_key_gen_util/oemRSAKeys/
oemRootCertPublicKey.pem -endian L -hash_format SHA256_TRUNC

The output files will be generated at the following output folder:

./oem_tools_pkg/cert_utils/am_hbk_gen/hbk_gen_util_outPut

3.2 OEM Key Request Utility

The OEM Key Request Utility is used to generate the derived-Krtl-key-request-cer-
tificate to be processed at Ambiq’s secure lab. The output of this utility is sent to
Ambiq which contains the key request public key. This is used by Ambiq’s response
utility to encrypt the derived Krtl key used for encrypting the OEM assets.

./oem_tools_pkg/oem_asset_prov_utils/oem_key_request/
am_oem_key_request_util.py

3.2.1 Input Parameters

The inputs to the OEM Key Request Utility are provided through the configuration
file as a command line parameter. The details of the config file parameters are
described in the example config file itself.

./oem_tools_pkg/oem_asset_prov_utils/oem_key_request/am_config/
am_dmpu_oem_key_request.cfg

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide OEM Provisioning

14 A-SOCAP4-UGGA01EN v1.6

3.2.2 OEM Key Request Command

The following command will generate the key request binary data:

./oem_tools_pkg/oem_asset_prov_utils/oem_key_request/$
python am_oem_key_request_util.py ./am_config/ am_dmpu_oem_key_re-
quest.cfg

The output file containing the key request data is generated as follows:

./oem_tools_pkg/oem_asset_prov_utils/oem_key_request/oem_re-
quest_pkg.bin

The key request should be delivered to Ambiq which will process the request and
return the icv_response_pkg.bin file.

3.3 OEM Asset Packaging Utility

The OEM Asset Packaging Utility is used to encrypt the OEM assets before sending
it to the device manufacturing to provision the encrypted assets securely.

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/
am_dmpu_oem_asset_pkg_util.py

This utility mainly encrypts three plain text assets (Kcp, Kce, and OEM secrets) sep-
arately and generate three encrypted assets blobs. The plain text OEM-secrets and
icv_response_pkg.bin received from Ambiq can be placed at the following loca-
tion as described in the example config file:

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/inputData/

3.3.1 Input Parameters

The three config files for each asset are as follows.

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/am_config/
oem_asset_enc.cfg

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/am_config/
am_asset_oem_ce.cfg

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/am_config/
am_asset_oem_cp.cfg

3.3.2 Command(s) For Asset(s) Generation

The following command(s) are used to generate the encrypted OEM assets:

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/$

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide OEM Provisioning

15 A-SOCAP4-UGGA01EN v1.6

python am_dmpu_oem_asset_pkg_util.py ./am_config/oem_asset_enc.cfg

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/$

python am_dmpu_oem_asset_pkg_util.py ./am_config/am_asset_oem_ce.cfg

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/$

python am_dmpu_oem_asset_pkg_util.py ./am_config/ am_as-
set_oem_cp.cfg

The output files containing the encrypted assets should be generated as follows.

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/
oem_asset_pkg.bin

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/
oem_prov_asset_kce_pkg.bin

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/
oem_prov_asset_kcp_pkg.bin

3.4 OEM Asset Gen Util

The OEM Asset Gen Utility generates a binary file used to initialize OEM OTP secu-
rity settings. These setting are available to set in the file named oem_asset_-
gen.cfg.

The tool creates a 2k binary data file that is an input to the OEM Provisioning Data
Gen Utility discussed in the next section.

3.4.1 Input Parameters

OEM OTP security setting can be modified via the configuration file named
oem_asset_gen.cfg:

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/oem_asset_-
gen_util.py

The following config file is used to generate the OEM provision blob.

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/am_config/
oem_asset_gen.cfg

3.4.2 Tool Execution

The following command will be used to generate the encrypted OEM assets blob:

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/$
python oem_asset_gen_util.py ./am_config/oem_asset_gen_cfg

The output of the tool generates as follows:

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide OEM Provisioning

16 A-SOCAP4-UGGA01EN v1.6

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/oem_as-
set_test_data.bin

3.5 OEM Provisioning Data Gen Util

The OEM Provisioning Data Gen Utility generates the final encrypted OEM provi-
sioning blob which is decrypted by the OPT tool on the device before provisioning
the data.

The tool mainly joins the three encrypted OEM assets generated by the OEM Asset
Packaging Utility. It also adds default DCU, initial software version and more to the
final blob which is provided through the config file.

The utility is available at the following path.

3.5.1 Input Parameters

The following is the input parameter:
./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/
am_dmpu_prov_data_gen_util.py

The following config file is used to generate the OEM provision blob:
./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/am_config/
am_dmpu_data_gen.cfg

3.5.2 Tool Execution

The following command will be used to generate the encrypted OEM assets blob:
./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/$
python am_dmpu_prov_data_gen_util.py ./am_config/am_dmpu_data_-
gen_cfg

The output of the tool generates as follows:
./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/dmpu_prov_-
data_blob.bin

3.6 OEM Provisioning Tool (OPT)

The OPT is a Ambiq signed tool which is downloaded and executed on the chip
during device production in the OEM manufacturing facility.

The tool is downloaded in SRAM at address 0x10030000, and the OEM encrypted
assets generated as per Section 3.5.2 Tool Execution on page 16, at the SRAM address
0x10037000. After downloading these 2 blobs, the device needs to be reset. At the
following boot, the OEM assets get provisioned if both the blobs are authenticated

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide OEM Provisioning

17 A-SOCAP4-UGGA01EN v1.6

successfully. After a successful OEM provisioning, the device will reset, and is tran-
sitioned to secure LCS.

Note: If the device provisioning fails for some reason, it will remain in DM LCS.

The OPT tool is available at the following location:
./oem_tools_pkg/oem_prov_tool/opt_image_pkg.bin

18 A-SOCAP4-UGGA01EN v1.6

SECTION

4 Customer Infospace
Provisioning (INFO0)

Customer infospace, also known as INFO0, is a 2KB area of MRAM which controls a variety of
customer-specific features of the MCU. The following sections provide information on how to
provision INFO0 for a particular application.

The scripts for the following examples are also located in /tools/apoll4b_scripts directory in
the AmbiqSuite SDK.

4.1 Info0 Generation

The script create_info0.py can be used to create a binary file to be populated as
INFO0. It allows the user to define a number of other INFO0 parameters based on
command line.

$ python3 create_info0.py --help
usage: create_info0.py [-h] [--valid {0,1,2}] [--version VERSION]
 [--main MAINPTR] [--cchain CERTCHAINPTR]
 [--trim CUSTTRIM] [--wTO WIREDTIMEOUT] [--u0 U0]
 [--u1 U1] [--u2 U2] [--u3 U3] [--u4 U4] [--u5 U5]
 [--sdcert SDCERT] [--rma RMAOVERRIDE] [--sresv SRESV]
 [--loglevel {0,1,2,3,4,5}]
 output
Generate Apollo4b Info0 Blob
positional arguments:
 output Output filename (without the extension)
optional arguments:
 -h, --help show this help message and exit
 --valid {0,1,2} INFO0 Valid 0 = Uninitialized, 1 = Valid, 2 = Invalid
 (Default = 1)?
 --version VERSION version (Default = 0)?
 --main MAINPTR Main Firmware location (Default = 0x18000)?
 --cchain CERTCHAINPTR
 Certificate Chain location (Default = 0xFFFFFFFF)?
 --trim CUSTTRIM customer trim ?
 --wTO WIREDTIMEOUT Wired interface timeout in millisec (default = 20000)
 --u0 U0 UART Config 0 (default = 0xFFFFFFFF)

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Customer Infospace Provisioning (INFO0)

19 A-SOCAP4-UGGA01EN v1.6

 --u1 U1 UART Config 1 (default = 0xFFFFFFFF)
 --u2 U2 UART Config 2 (default = 0xFFFFFFFF)
 --u3 U3 UART Config 3 (default = 0xFFFFFFFF)
 --u4 U4 UART Config 4 (default = 0xFFFFFFFF)
 --u5 U5 UART Config 5 (default = 0xFFFFFFFF)
 --sdcert SDCERT Secure Debug Cert Address (default = 0x1ff400)
 --rma RMAOVERRIDE RMA Override Config 2 = Enabled, 5 = Disabled (default
= 0x2)
 --sresv SRESV SRAM Reservation (Default 0x0)
 --loglevel {0,1,2,3,4,5}
 Set Log Level (0: None), (1: Error), (2: INFO), (4:
 Verbose), (5: Debug) [Default = Info]

Example Usage:

Create INFO0 image with Wired UART set on pins 53 (Tx) and 55 (Rx) with baud
115200 (0x1C200), and the timeout of 5 Sec. Main image (for nonsecure boot) is
expected at 0x18000, and the SD Cert location set to 0x1ff400. If configured for
secureboot, the OEM cert chain is located at 0xC0000.

python3 ./create_info0.py --valid 1 --u0 0x1C200c0 --u1 0xFFFF3537 --u2 0x4
--u3 0x4 --u4 0x0 --u5 0x0 --main 0x18000 --version 1 --wTO 5000 --sdcert
0x1ff400 --cchain 0xc0000 info0

This will generate info0.bin, which can then be programmed to the device.

4.2 Info0 Programming

The generated info0 can be directly programmed using debugger through Boot-
ROM provided helper functions, or a generic update flow provided by SBL can be
used to update/program, Info0.

AmbiqSuite SDK provides a sample script jlink-prog-info0.txt for the direct pro-
gramming of Info0 using debugger, using the first method.

This script can be processed by the JLINK command line utility with an invocation
following the following format (for Windows):

JLink.exe -CommanderScript jlink-prog-info0.txt

Alternatively, Info0 can be programmed using the SBL assisted update flow, by
generating an Info0 update image (see Section 7.3.3 Info0 Update Images on page
36) and then using one of the supported methods to download the update image
and initiate an update (see Section 8 Downloading Images and Initiating Updates on
page 37).

20 A-SOCAP4-UGGA01EN v1.6

SECTION

5 OEM Image Certificate
Generation

Provisioning of the Apollo4 Family in the DM LCS depends upon a “chain” of public key certifi-
cates as shown in Figure 5-1. This method provides flexibility and additional security in case
that the content changes or a certificate in the chain is compromised.

Figure 5-1: OEM Certificate Generation

5.1 Prerequisite

The OEM certificate chain generation process assumes that OEM RSA keys have
already been generated using the KeyGen Utility during the provisioning data gen-
eration process. The OEM Certificate chain should use these same OEM RSA keys.

While processing the Certificate Chain authentication on the device, it is also
assumed that the device is already provisioned with the Root of Trust (HBK1 in the
OTP), as the OEM Root Certificate needs to be authenticated using the RoT.

5.2 Note on the Tool Output Files

Many of the steps below will generate both *.txt files that are appropriate to cut
and paste into source code files for testing. However, the tools also generate *.bin
files that provide the assets for later steps to produce a provisioning blob.

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide OEM Image Certificate Generation

21 A-SOCAP4-UGGA01EN v1.6

5.3 OEM Root Certificate Gen

The OEM Root Certificate is used to validate the Public key provided by the OEM. It
also authenticates the Public key embedded in the OEM key certificate, which is
next in the chain.

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util.py

5.3.1 Input Parameters

The inputs to the OEM Root Certificate Gen is provided through the configuration
file as a command-line parameter. The details of the configuration file parameters
are described in the following with example configuration values.

./oem_tools_pkg/cert_utils/cert_gen_utils/am_config/am_oem_-
root_cert_hbk1.cfg

5.3.2 OEM Root Cert Gen Command

The following command generates the OEM Root Certificate:

./oem_tools_pkg/cert_utils/cert_gen_utils/$

python am_cert_key_util.py ./am_config/am_oem_root_cert_hbk1.cfg

The output file containing the OEM Root Certificate is generated in binary and text
formats:

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util_output/
oem_root_cert_hbk1.bin

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util_output/
oem_root_cert_hbk1_Cert.txt

5.4 OEM Key Certificate Gen

The OEM Key Certificate Utility generates the OEM Key Certificate to validate the
Public key in the Content Certificate which is next in the OEM Certificate Chain:

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util.py

5.4.1 Input Parameters

The input to the OEM Key Certificate Gen is provided through the configuration file
as a command-line parameter. The details of the configuration file parameters are
described in the following with example configuration values.

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide OEM Image Certificate Generation

22 A-SOCAP4-UGGA01EN v1.6

./oem_tools_pkg/cert_utils/cert_gen_utils/am_config/
am_oem_key_cert.cfg

5.4.2 OEM Key Certificate Gen Command

The following command generates the OEM Key Certificate:

./oem_tools_pkg/cert_utils/cert_gen_utils/$
python am_cert_key_util.py ./am_config/am_oem_key_cert.cfg

The output file containing the OEM Key Certificate is generated in binary and text
formats:

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util_output/
oem_key_cert.bin
./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util_output/
oem_key_cert_Cert.txt

5.5 OEM Content Certificate Gen

The OEM Content Certificate is used to authenticate OEM software images on the
device. It contains a list of software images, along with the start addresses and
their sizes.

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_content_util.py

5.5.1 Input Parameters

The inputs to the OEM Content Certificate Gen Tool is provided through the config-
uration file as a command-line parameter. The details of the configuration file
parameters are described in the following with example configuration values.

./oem_tools_pkg/cert_utils/cert_gen_utils/am_config/
am_oem_cnt_cert.cfg

The list of software images is listed in a text file that is used by the config file as
mentioned above. The example list file is placed at the following location:

./oem_tools_pkg/cert_utils/cert_gen_utils/inputData/images_table.tbl

NOTE: Ambiq SBL mandates the software image(s) should be stored in MRAM
un-encrypted and execute it from the stored location itself. Choose the
corresponding configuration as described in the config file and set the
images_table.tbl accordingly, as mentioned below. Please check with Ambiq
before using other options.

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide OEM Image Certificate Generation

23 A-SOCAP4-UGGA01EN v1.6

The format of the image table are as follows:

ImageName - Path to the image file.

RAMloadAdd - Since the image is executed from the MRAM itself, as config-
ured in config file, this must be set to image start address in MRAM.

flashStoreAdd – Must be set to 0xFFFFFFFF.

Maxsize - Must be set to a value equal to, or greater than the image size.

Enc-Scheme - 0 - plain text, 1 encrypted.
Note: The encrypted option is not supported and must not be selected.

WriteProtect - When set to 0x1, Ambiq Bootloader will write protect the image
(in 16K increments) as part of secure boot. Set it to 0, if no write protection is
needed.

CopyProtect - When set to 0x1, Ambiq Bootloader will copy protect the image
(in 16K increments) as part of secure boot. Set it to 0, if no copy protection is
needed. Note that, if enabled, the executable image must be built with no liter-
als in the code area, as it will otherwise fail because of copy-protection.

ExtendedFormat - Not Supported. Must be set to 0.

5.5.2 OEM Content Certificate Gen Command

The following command will be used to generate the content certificate:

./oem_tools_pkg/cert_utils/cert_gen_utils/$

python am_cert_content_util.py ./am_config/am_oem_cnt_cert.cfg

The output file containing the Ambiq assets is generated as follows:

./oem_tools_pkg/cert_utils/cert_gen_utils/
am_cert_content_util_output/content_cert.bin

./oem_tools_pkg/cert_utils/cert_gen_utils/
am_cert_content_util_output/content_cert_Cert.txt

24 A-SOCAP4-UGGA01EN v1.6

SECTION

6 OEM Debug Certificate
Generation

The debug certificate(s) is used to enable the debugging or changing the device to RMA LCS
for device analysis. The Debug certificates can be processed in DM and Secure LCS.

The debug certificate consists of three certificates debug-key certificate, Debug Enabler certif-
icate, and Debug Developer certificate as shown in Figure 6-1. All these certificates need to be
generated in the same sequence. The debug-key certificate is added to the debug enabler cer-
tificate using the Debug enabler certificate gen config file. Similarly, the debug enabler certifi-
cate is added to the debug developer certificate using the debug developer certificate gen
config file. Finally, the debug developer certificate is downloaded on the device as a single
entity to be processed by the SBR as three combined certificates.

Figure 6-1: OEM Debug Certificates

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide OEM Debug Certificate Generation

25 A-SOCAP4-UGGA01EN v1.6

6.1 OEM Debug-Key Certificate Gen

The OEM Debug-Key Certificate is used to validate the Public key provided by the
OEM. It also authenticates the Public key embedded in the OEM Enabler Certificate,
which is next in the debug certificate chain.

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util.py

6.1.1 Input Parameters

The inputs to the OEM Debug-Key Certificate Gen is provided through the configu-
ration file as a command-line parameter. The details of the configuration file
parameters are described in the following with example configuration values.

./oem_tools_pkg/cert_utils/cert_gen_utils/am_config /am_oem_db-
g_key_cert.cfg

6.1.2 OEM Debug-Key Gen Command

The following command generates the OEM Debug-Key Certificate:

./oem_tools_pkg/cert_utils/cert_gen_utils/$
python am_cert_key_util.py ./am_config/am_oem_dbg_key_cert.cfg

The output file containing the ICV Debug-Key Certificate is generated in binary and
text formats as follows.

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util_output/
debug_oem_key_cert.bin

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util_output/
debug_oem_key_cert_Cert.txt

6.2 OEM Debug Enabler Certificate Gen

The OEM Debug Enabler Certificate utility is used to generate the debug enabler
certificate which contains the OEM DCU debug masks, and lock masks, or RMA
information (in case of RMA certificate for OEM). It also authenticates the Public key
embedded in the OEM debug developer certificate, which is next in the debug cer-
tificate chain.

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_dbg_en-
abler_util.py

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide OEM Debug Certificate Generation

26 A-SOCAP4-UGGA01EN v1.6

6.2.1 Input Parameters

The inputs to the OEM Debug Enabler Certificate Gen is provided through the con-
figuration file as a command-line parameter. The details of the configuration file
parameters are described in the following with example configuration values.

./oem_tools_pkg/cert_utils/cert_gen_utils/am_config/
am_oem_dbg_enabler_cert.cfg

6.2.2 OEM Debug Enabler Certificate Gen Command

The following command generates the OEM Debug Enabler Certificate:

./oem_tools_pkg/cert_utils/cert_gen_utils/$
python am_cert_dbg_enabler_util.py ./am_config/am_oem_dbg_en-
abler_cert.cfg

The output file containing the OEM Debug Enabler Certificate is generated in
binary format:

./oem_tools_pkg /cert_utils/cert_gen_utils/ am_debug_cert_output/
oem_dbg_cert_enabler_pkg.bin

6.3 OEM Debug Developer Certificate Gen

The OEM Debug Developer Certificate is used to generate the final debug certifi-
cate which contains OEM debug-key Certificate, OEM Debug Enabler Certificate,
and SOC-ID (Chip specific Identification).

./oem_tools_pkg /cert_utils/cert_gen_utils/am_cert_dbg_devel-
oper_util.py

6.3.1 Input Parameters

The inputs to the OEM Debug Developer Certificate Gen is provided through the
configuration file as a command-line parameter. The inputs configured in the con-
figuration file is described in the example configuration file itself at the following
location:

./oem_tools_pkg /cert_utils/cert_gen_utils/am_config/
am_oem_dbg_developer_cert.cfg

6.3.2 OEM Debug Developer Certificate Gen Command

The following command generates the OEM Developer Certificate:

./oem_tools_pkg/cert_utils/cert_gen_utils/$

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide OEM Debug Certificate Generation

27 A-SOCAP4-UGGA01EN v1.6

python am_cert_dbg_developer_util.py ./am_config/
am_oem_dbg_developer_cert.cfg

The output file containing the OEM Debug Developer Certificate is generated in
binary and text (‘c’ Header file) formats as follows:

./oem_tools_pkg/cert_utils/cert_gen_utils/am_debug_cert_output/
oem_dbg_cert_developer_pkg.bin

./oem_tools_pkg/cert_utils/cert_gen_utils/am_debug_cert_output/
oemDeveloperCert.h

28 A-SOCAP4-UGGA01EN v1.6

SECTION

7 Image Generation for Apollo4
SBL

The Apollo4’s boot ROM and SBL (secure boot loader) are capable of performing a wide variety
of functions, each of which requires a binary image with a specific format, which in turn must
be loaded using a specific protocol. This section provides an overview of the various types of
binaries supported by the SBL, as well as some information about the scripts used to generate
them.

7.1 Overview of Image Types

7.1.1 Firmware

Raw application binaries are the most basic image format for the Apollo4. This is
simply a compiled application in the standard ARM format, and it can be loaded
directly to MRAM using any SWD programming tool (including the JLINK device on
the Apollo4 evaluation kits). All later firmware images will be derived from this
basic image.

Figure 7-1: Firmware

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Image Generation for Apollo4 SBL

29 A-SOCAP4-UGGA01EN v1.6

7.1.2 Firmware OTA

Firmware OTA images are created by adding metadata to raw binaries using the
create_cust_image_blob.py script (described in detail later in this document). OTA
images are first loaded into a temporary location in MRAM using SWD program-
ming tools (step 1) or through other application specific means for field upgrade
(e.g., Firmware upgrade over BLE), and then the SBL will validate and load the inner
application binary to its final destination (step 2). OTA images provide the user with
the option to encrypt and/or sign application binaries. The most common use case
for an OTA image is for a firmware upgrade. An existing user application can
receive a binary (optionally encrypted or signed) from an external source, program
that binary to a location, and then instruct the SBL to finish the firmware upgrade
following a reset, potentially replacing the original user application.

Figure 7-2: Firmware OTA

To make this two-step process easier during development, AmbiqSuite includes a
set of JLink scripts demonstrating how to load the OTA image to an appropriate
temporary location over SWD and also how to trigger the SBL to perform the sec-
ond step of the upgrade. See the tools/apollo4b_scripts directory in AmbiqSuite
to find these scripts. The script also serves as a reference for the process an applica-
tion would need to follow the over-the-air upgrades when using alternative means
to download the OTA image.

The same OTA process is reused for non-firmware upgrades like INFO0, trim
patches, key revocations, etc., as well.

7.1.3 Wired Download

When using SBL provided Wired Download functionality, the raw images need to
be formatted for SBL to understand and process.

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Image Generation for Apollo4 SBL

30 A-SOCAP4-UGGA01EN v1.6

Similar to OTA images, wired download images are also created by adding meta-
data to raw binaries with the create_cust_image_blob.py script. Wired down-
load metadata can be used to wrap any image type, and it will change how the
image may be downloaded and stored/processed on the device. The wired down-
load image format is understood both by the SBL and by the PC-side utility
uart_wired_update.py. Using this utility and a wired download image, a user can
effectively program the Apollo4 MRAM using a UART instead of an SWD connec-
tion. This is helpful in situations where an SWD connection is unavailable, includ-
ing situations where an open SWD port might be a security risk. Depending on
device configuration, the wired download could provide a secure (encrypted and
authenticated) channel for device programming/updates. The wired download is
fully managed by the SBL, so this procedure can be used on an otherwise unpro-
grammed the Apollo4 device. The SBL will read the wired download data directly
over the UART interface, potentially decrypting it or authenticate using an RSA sig-
nature, and program the data to its final location in MRAM. No temporary MRAM is
required for this process.

Figure 7-3: Wired Download

7.1.4 Wired OTA

The OTA and Wired Download formats from the previous sections can be used
simultaneously for a single image. In this case, the user will first process the raw
binary to create an OTA image, and then process the OTA image to create a Wired
OTA image. This format combines the advantages of the two formats to create an
image that can be loaded entirely over UART, but which can also be loaded to a
temporary location to avoid corrupting a known good image until the update is
fully decrypted and authenticated.

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Image Generation for Apollo4 SBL

31 A-SOCAP4-UGGA01EN v1.6

Figure 7-4: Wired OTA

The update process with a Wired OTA image is similar to the standard OTA process,
but image download step is performed over UART instead of SWD. In step one, the
UART boot host will send the Wired OTA image to the SBL, which will program its
contents (the OTA image) to a temporary location in MRAM. Afterwards, the Apol-
lo4 will reboot and perform step 2, where it processes the OTA image and pro-
grams the device firmware to its final location.

Figure 7-5: Wired OTA - Step 2

7.1.5 Summary

The diagram below further summarizes the relationship between raw binaries, OTA
images, Wired Download images, and Wired OTA images. While the examples used
in the previous sections all assumed we were working with an application binary,
there are other image types that can be used in place of the OTA image type shown
here.

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Image Generation for Apollo4 SBL

32 A-SOCAP4-UGGA01EN v1.6

Figure 7-6: Relationship Summary

The following sections discuss these additional image types and also explain in
detail how the supporting scripts work.

7.2 Image Generation Scripts

The Apollo4’s SBL (secure boot loader) is capable of performing a wide variety of
functions, each of which requires a binary image with a specific format, which in
turn must be loaded using a specific protocol. The create_cust_image_blob.py
script described in this section can generate most of these image formats, includ-
ing the following:

Secure and non-secure Firmware OTA
Wired Download
Certificate Chain Update
Key Revocation
INFO0 Update

7.2.1 Basic Script Usage

Most image formats for the Apollo4 are handled by create_cust_image_blob.py.
This script can be controlled either with command line parameters, by config file,
or with a combination of the two, where the command-line arguments always take
precedence. The full list of options can be found by calling the script using the --
help command line option, but many options are not required for basic images.
The following sections describe the supported image types along with the rele-
vant options for each one.

For more examples of how to use create_cust_image_blob.py, see the tools/
apollo4b_scripts/examples directory of AmbiqSuite.

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Image Generation for Apollo4 SBL

33 A-SOCAP4-UGGA01EN v1.6

7.2.2 Example Configuration File

Below is an example showing the configuration files used for create_cust_im-
age_blob.py alongside the equivalent command-line commands.

Configuration file “firmware.ini”:

#**
#
Configuration file for create_cust_image_blob.py
#
Run "create_cust_image_blob.py --help" for more information about the
options
below.
#
All numerical values below may be expressed in either decimal or hexadeci-
mal
"0x" notation.
#
To re-generate this file using all default values, run
"create_cust_image_blob.py --create-config"
#
#**
[Settings]
chip = apollo4b
app_file = hello_world.bin
Location where the image should be installed
load_address = 0x18000
enc_algo = 0x0
specify enc_algo as 1 to do AES encryption
auth_algo = 0x0
auth_key relevant only if auth_algo is 1
auth_key indicates which PK is used for signature
auth_key = 0x2
kek_index = 0x80
image_type = firmware
certificate = None
output = hello_world_ota.bin
key_table = keys.ini

This configuration creates hello_world_ota.bin (a non-secure firmware OTA image)
from hello_world.bin (a compiled Apollo4 binary), with no encryption, authentica-
tion, or content certificate. To execute this configuration, one would run the follow-
ing command from the same directory as the file.

$ python3 ./create_cust_image_blob.py -c firmware.ini

Equivalently, this configuration can also be expressed on the command line as fol-
lows.

$ python3 ./create_cust_image_blob.py --chip apollo4b --bin hel-
lo_world.bin --load-address 0x18000 --enc-algo 0 --kek-index 0x80 --
auth_algo 0 --auth-key 0x2 --image-type firmware

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Image Generation for Apollo4 SBL

34 A-SOCAP4-UGGA01EN v1.6

7.2.3 Universal Security Options

The Apollo4 SBL supports AES encryption and RSA authentication for a wide vari-
ety of update types. Correspondingly, the create_cust_image_blob.py script
includes features to encrypt and/or sign binaries in the correct format to be
decrypted and validated by the SBL. Each of the security options below can be
applied to any image type. Additional options for specific image types will be cov-
ered in later sections.

auth_algo: The authentication method to use. (0 = none, 1 = RSA (RSA PSS
2072 after Hash SHA 256))

auth_key: The key index of the authentication key. The index represents the
actual asymmetric key used for signing. It corresponds to public key contained
in one of the preinstalled certificates on the device (0 == root cert, 1 == key
cert, 2 == content cert).

enc_algo: The encryption algorithm to use for securing the transfer (0 = none,
1 = AES-128 CTR mode)

kek_index: The index for the key encryption key to be used. The index rep-
resents the key-encryption-key used to decrypt the encrypted key bundled in
the image. Index 0 and 1 represent hardware keys (Kcp or Kce respectively) pro-
grammed during provisioning. Key indices 0x80 onwards represent OTP key-
bank keys, with each index representing a 128b AES key.

key_table: Path to a configuration file describing the encryption keys used with
the Apollo4. (Can be set to “None” if no encryption or authentication is needed)

This key_table file contains pointers to various Private Key assets used to sign the
image blobs, as well as the symmetric keys used for encryption.

The asymmetric key material should correspond to the certificates provisioned on
the chips, and are referenced using password encrypted .pem files.

The symmetric key material should match with the OTP keys programmed in the
chips, and is referenced using pointers to binary key and keybank files. Typically,
these keys will be used as Key Encryption Keys (KEK) for an OTA image.

To use a particular key, you will need to supply the keys.ini file as shown above, as
well as a KEK index for encryption and Auth Keys index for signing.

Key file
[Root Key]
index = 0x0
format = pem
filename = oem_tools_pkg/am_oem_key_gen_util/oemRSAKeys/oemRootCertKey-
Pair.pem
passfile = oem_tools_pkg/am_oem_key_gen_util/oemRSAKeys/pwdOemRootCert-
Key_Rsa.txt

[Key Cert Key]
index = 0x1
format = pem

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Image Generation for Apollo4 SBL

35 A-SOCAP4-UGGA01EN v1.6

filename = oem_tools_pkg/am_oem_key_gen_util/oemRSAKeys/oemKeyCertKey-
Pair.pem
passfile = oem_tools_pkg/am_oem_key_gen_util/oemRSAKeys/pwdOemKeyCert-
Key_Rsa.txt

[Content Cert Key]
index = 0x2
format = pem
filename = oem_tools_pkg/am_oem_key_gen_util/oemRSAKeys/oemContentCertKey-
Pair.pem
passfile = oem_tools_pkg/am_oem_key_gen_util/oemRSAKeys/pwdOemContentCert-
Key_Rsa.txt

[Symmetric Keys]
kcp = ../../oem_tools_pkg/am_oem_key_gen_util/oemAESKeys/kcp.bin
kce = ../../oem_tools_pkg/am_oem_key_gen_util/oemAESKeys/kce.bin
kb0 = oem_tools_pkg/oem_asset_prov_utils/inputData/keyBank0.bin
kb1 = oem_tools_pkg/oem_asset_prov_utils/inputData/keyBank1.bin
kb2 = oem_tools_pkg/oem_asset_prov_utils/inputData/keyBank2.bin
kb3 = oem_tools_pkg/oem_asset_prov_utils/inputData/keyBank3.bin

7.3 Generating Specific Image Types

7.3.1 Firmware OTA Images

Firmware OTA images contain firmware and metadata to be used by the boot-
loader to update the firmware on the device. Firmware images can also be created
with built-in encryption and authentication using the “secure-firmware” image
type. The following options are relevant for firmware and secure-firmware images:

app_file: File to be used as the application binary
certificate: For secure images, the binary file corresponding to the content cer-

tificate to be installed alongside the application binary.
image_type: set to “firmware” for non-secure images, or “secure-firmware” for

secure images.
load_address: Address where the application should be written in the MRAM.

7.3.2 Wired Download Images

Wired download images can contain any blob and instructions for programming to
a specific location. The bootloader will read the image and program the blob to the
correct location. Wired images can be created with or without built-in encryption
using the “wired” image type. Once the wired image is created, the
uart_wired_update.py script can be used to execute the wired download instruc-
tions and load the blob into the Apollo4 memory. Wired download images support
the following options:

app_file: Binary file to write to internal memory

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Image Generation for Apollo4 SBL

36 A-SOCAP4-UGGA01EN v1.6

image_type: set to “wired”
load_address: Address where the binary data should be written in the MRAM.
ota: Set this bit to alert the SBL that this wired download contains a firmware

OTA.
wired_chunk_size: Largest number of bytes the Apollo4 should download in a

single pass. See wired OTA description in Section 9.1 Upgrading Multiple Images
in One Step on page 41.

7.3.3 Info0 Update Images

This image type can be used to update the INFO0 data in the Apollo4 device. INFO0
is used to contain certain non-volatile Apollo4 device settings. For more informa-
tion, see the create_info0.py script documentation in Section 4.1 Info0 Genera-
tion on page 18. INFO0 could be updated as a whole, or partially.

app_file: Binary file to write to info0 space
image_type: set to “info0”
offset: The word offset within info0 where this update binary should be written.

7.3.4 OEM Certificate Chain Update

OEM Chain Update images are used to make updates to the certificate chain used
by the Apollo4 SBL. The root certificate, key certificate, and content certificate all
gets changed using this process. This option will be primarily used to increase the
certificate version to ensure images cannot be rolled back to older certificates.

certificate: Filename for the content certificate to be installed.
root_cert: Filename for the root certificate to be installed.
key_cert: Filename for the key certificate to be installed.

7.3.5 Key Revocation Images

The Apollo4 “keybank” keys (as discussed in Section 1 Keys on page 10) are pro-
grammed into OTP and can be used for encryption both in the boot process and in
the main application. The purpose of the “key revocation” image type is to give
users a way to revoke access to specific keybank keys in case they have been com-
promised.

In addition to the universal options, the key revocation image type supports only
the following option:

app_bin: Filename for the key update binary to be used for key revocation.

The key update binary itself is a 64-bit bitmask (little endian), where each bit corre-
sponds to a single 128-bit AES key from the keybank. Setting a bit revokes the key
with the same number (for example, setting bit 0 revokes keybank AES key 0).

37 A-SOCAP4-UGGA01EN v1.6

SECTION

8 Downloading Images and
Initiating Updates

As described in the previous chapter, the Apollo4 SBL is capable of receiving and validating
firmware updates through multiple methods. This chapter focuses on the available methods
for transferring data from a boot host (often a PC) to the Apollo4 SBL. The currently supported
data transfer methods are as follows:

SWD Debugger (such as JLink)
Wired Update
Over the Air (with the help of a user application)

AmbiqSuite contains examples for each of these transfer methods, and any of them may be
used for firmware updates in customer applications. The following sections describe the avail-
able examples in further detail.

8.1 SWD Download Using JLINK

The most straightforward firmware download method is over SWD with a hard-
ware debugger (like the JLINK). Using the debugger, a user may write directly to
MRAM or INFO0. Depending on the type of image downloaded, the SBL will then
take over the image validation and boot process immediately following the next
reset operation.

AmbiqSuite includes JLINK scripts that show how the JLINK can be used to pro-
gram a specific memory location in the Apollo4, and initiate an update through
SBL.

These scripts include:

General Update
– jlink-ota.txt: An example of a debugger-driven OTA download. This can be

used with any update image except for SBL update
SBL Update

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Downloading Images and Initiating Updates

38 A-SOCAP4-UGGA01EN v1.6

Installation of a replacement Secure Bootloader (SBL) requires special processing.
There are two slots (at addresses 0x00008000 & 0x00010000) which are reserved
for Secure Bootloader images and their corresponding Certificate Chains. Only one
image is in use at a time.

The SBL Image Update consists of two blobs

SBL Metadata (sbl_ota.bin) which can be stored anywhere in MRAM and is dis-
carded after the update

Encrypted SBL Image (encrypted_sbl0.bin) which needs to be stored at the
“Staging Area”

The SBL image update is initiated similar to other images, and consists of down-
loading the Encrypted SBL image to staging area, and then downloading the SBL
metadata just like any other OTA blob and initiating the OTA.

AmbiqSuite SDK provides reference JLink scripts for SBL updates in tools/apol-
lo4b_scripts/jlink-prog-sbl[01].txt:

jlink-prog-sbl1.txt to be used if current SBL running from 0x8000
jlink-prog-sbl0.txt to be used if current SBL running from 0x10000

Each of these scripts can be processed by the JLINK command line utility with an
invocation following the following format (for Windows): JLink.exe -Commander-
Script jlink-ota.txt

8.2 Wired Update

Wired updates are a way to send data to the SBL without using a debugger connec-
tion. The SBL contains a UART or SPI-based boot client that can receive firmware
updates from a host application. The UART boot host program is called
uart_wired_update.py, and is discussed further in the next chapter.

8.3 Over the Air Updates

The SBL can also be used to support over the air updates enabled by user firmware.
In this use case, the user firmware will communicate with a boot host and down-
load an OTA image (described in the image formats section). Once the download is
completed, the user applica- tion can program the update blob information by
programming the OTA infrastructure (see Apollo4 Family Secure Update User’s
Guide), and initiate a device reset. SBL takes over on next bootup to validate the
downloaded image, and perform a firmware upgrade

The AmbiqSuite SDK provides an example of an OTA firmware update over BLE
through the “AMOTA” app for the Apollo4. This example implements a specific
transfer protocol with a counterpart host implemented as a Phone App
(Ambiq_BLE App).

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Downloading Images and Initiating Updates

39 A-SOCAP4-UGGA01EN v1.6

The ota_binary_converter.py script in tools/apollo4_amota/scripts can be used
to generate an OTA blob compatible with AMOTA. Most of the optional parameters
are no longer relevant for the Apollo4.

Example usage:

python3 ota_binary_converter.py --appbin main_ota.bin -o main_ ota_a-
mota

Thereafter, the normal procedure to upgrade the image using AMOTA and
Ambiq_BLE App on the phone can be used to upgrade the firmware on the device.

40 A-SOCAP4-UGGA01EN v1.6

SECTION

9 UART Wired Update

For UART based wired update to work, the device needs to be provisioned to allow UART wired
update through OTP and InfoSpace settings (see Apollo4 SoC Security User's Guide). SBL will get
into update mode in one of the two cases:

Encountering Boot error (e.g., invalid main image)
GPIO Override (configured through OTP)

The host needs to be connected to the device on the configured pins to match with the Info-
Space UART configurations, and needs to initiate the communication within a short window
configured (through InfoSpace).

Script uart_wired_update.py is designed to emulate the host side functions in a limited way
when using the UART as wired interface. This can be useful during development to test the
UART wired update features, and to program the Apollo4 device in select ways while the
debugger is disabled. Usage information for uart_wired_update.py appears below:

$ python3 uart_wired_update.py --help

usage: uart_wired_update.py [-h] [-b BAUD] [--raw RAW] [-f BINFILE] [-o OTADESC] [-r
{0,1,2}] [-a {0,1,-1}] port

UART Wired Update Host for Apollo4b

positional arguments:

 port Serial COMx Port

optional arguments:

 -h, --help show this help message and exit

 -b BAUD Baud Rate (default is 115200)

 --raw RAW Binary file for raw message

 -f BINFILE Binary file to program into the target device

 -o OTADESC OTA Descriptor Page address (hex) - (Default is 0xFE000) - enter
0xFFFFFFFF to instruct SBL to skip OTA

 -r {0,1,2} Should it send reset command after image download? (0 = no reset, 1 = POI,
2 = POR) (default is 1)

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide UART Wired Update

41 A-SOCAP4-UGGA01EN v1.6

 -a {0,1,-1} Should it send abort command? (0 = abort, 1 = abort and quit, -1 = no
abort) (default is -1)

Example usage: Downloading an application using the wired download protocol.
python3 uart_wired_update.py -b 115200 COM3 -o 0xFFFFFFFF -r 0 -f application_wired.bin

Example usage: Downloading an OTA image of an application binary using the wired protocol.
python3 uart_wired_update.py -b 115200 COM3 -r 0 -f application_wired_ota.bin.

9.1 Upgrading Multiple Images in One Step

SBL supports upgrading multiple images in a single upgrade cycle using multiple
entries in OTA Descriptor.

UART Wired Update scripts can be used to achieve the same. The script is to be run
multiple times, once for each image. The key here is that OTA Descriptor is to be set
only in the first invocation, and reset is to be issued only for the last one.

Example below shows upgrading an isolated data segments and main image (all
considered non-secure main images generated as in section 6.1.1) together using
uart_wired_update.py:

First image (also programs the OTA Descriptor, and does not reset the device):
python3 uart_wired_update.py -b 115200 COM<X> -f img1_nonse-
cure_wire.bin -i 6 -r 0

Second image (does not program the OTA Descriptor or reset the device):
python3 uart_wired_update.py -b 115200 COM<X> -f img2_nonse-
cure_wire.bin -i 6 -r 0 –o 0xFFFFFFFF

Third image (does not program the OTA Descriptor but resets the device to initiate
the upgrade):
python3 uart_wired_update.py -b 115200 COM<X> -f img3_nonse-
cure_wire.bin -i 6 -r 1 –o 0xFFFFFFFF

9.2 Upgrading Large Binary (Using --wired-chunk-size
feature)
SBL uses DTCM for local reassembly and processing of wired update messages to
ensure only validated images are written to MRAM. The SBL reserves a fixed
amount of memory for its own operation, reducing the total amount of DTCM
available for wired updates. User applications may also require some portions of
DTCM to remain intact, further limiting the available space for updates. To allow for
wired downloads greater than the size of the available DTCM, the wired download
procedure can be made to download a large image in smaller chunks using the --
wire-chunk-size option.

To split a wired download into sections, you can specify the --wire-chunk-size
option in the wired download configuration file with the maximum number of

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide UART Wired Update

42 A-SOCAP4-UGGA01EN v1.6

bytes of scratch space available in the Apollo4 MCU. The create_cust_im-
age_blob.py script will automatically split the OTA image into a series of Wired
Download images wrapped into a single binary. You can then download this
binary to the Apollo4 device using the uart_wired_update.py script as normal.
The script will detect that the wired update image is actually composed of multiple
pieces and perform the download accordingly.

43 A-SOCAP4-UGGA01EN v1.6

SECTION

10 Wired Download Procedure

The standard use of wired download images is to allow a binary to be programmed to a device
using a method other than direct programming using Serial Wire Debug (SWD). This can be
useful when the SWD interface is either disabled or physically inaccessible. The basic proce-
dure for downloading a binary to the Apollo4 memory using the wired download option is as
follows:

1. Use create_cust_image_blob.py to wrap the binary (shown here as “application.bin”) into
a wired download image. Here, the input file “wired.ini” contains information about where
the application binary should be downloaded.

$ python3 create_cust_image_blob.py -c wired.ini --app_file application.bin
--output application_wired.bin

2. Use the resulting application_wired.bin file with the uart_wired_update.py script to load
the application into the Apollo4 memory. This will place a copy of application.bin directly
into the Apollo4 memory at the address specified in wired.ini.

10.1 Using Wired Download for OTA

A common use of the “wired download” format is to program a firmware OTA
image into a temporary location in the Apollo4 memory, and then have the SBL
validate it and move it to its final location. Some reasons you might favor this
approach over the previous approach include:

You are using a secure device, and you need to install a matching content certif-
icate alongside your application binary. (OTA files allow the inclusion of con-
tent certificates)

You want the binary data to be encrypted during the download portion.
You want the binary data to be authenticated by the SBL before being installed.

For most wired download OTA operations, you can use the following procedure:

Apollo4 Family OEM Provisioning, Update, and Tools User’s Guide Wired Download Procedure

44 A-SOCAP4-UGGA01EN v1.6

1. Use create_cust_image_blob.py to wrap an application binary into an OTA
blob. Here, firmware.ini contains the relevant settings for generating the OTA
image, and command line options are used to set the input and output binary
names.

$ python3 create_cust_image_blob.py -c firmware.ini --app_file
application.bin --output application_ota.bin

2. Use create_cust_image_blob.py a second time to wrap the OTA image into a
wired download image. Here, the wired.ini file would need to set the “ota”
option so the SBL can properly process the data.

$ python3 create_cust_image_blob.py -c wired.ini --app_file
application_ota.bin --output application_ota_wired.bin

3. Use the uart_wired_update.py script to load application_ota_wired.bin into
the Apollo4 memory and begin the firmware update process.

Ambiq SBL performs all the validations of the image in the DTCM before pro-
gramming to MRAM. This inherently means that the max size for the image that
can be downloaded in one go is limited to the available memory to SBL. If you
need to download a particularly large image, you can use the wired_chunk_-
size argument to split the download into multiple pieces. In this case, the boot-
loader will perform a series of “wired download” operations, each individually
verified until the OTA image is fully constructed in the Apollo4 MRAM.

© 2023 Ambiq Micro, Inc. All rights reserved.
6500 River Place Boulevard, Building 7, Suite 200, Austin, TX 78730

www.ambiq.com
sales@ambiq.com
+1 (512) 879-2850

A-SOCAP4-UGGA01EN v1.6
July 2023

	Introduction
	1.1 System Requirements
	1.2 Terminology

	Keys
	2.1 Key Gen Utility
	2.1.1 Input Parameters
	2.1.2 Key Gen Command

	OEM Provisioning
	3.1 HBK Gen Utility
	3.1.1 Input Parameters
	3.1.2 HBK Gen Command

	3.2 OEM Key Request Utility
	3.2.1 Input Parameters
	3.2.2 OEM Key Request Command

	3.3 OEM Asset Packaging Utility
	3.3.1 Input Parameters
	3.3.2 Command(s) For Asset(s) Generation

	3.4 OEM Asset Gen Util
	3.4.1 Input Parameters
	3.4.2 Tool Execution

	3.5 OEM Provisioning Data Gen Util
	3.5.1 Input Parameters
	3.5.2 Tool Execution

	3.6 OEM Provisioning Tool (OPT)

	Customer Infospace Provisioning (INFO0)
	4.1 Info0 Generation
	4.2 Info0 Programming

	OEM Image Certificate Generation
	5.1 Prerequisite
	5.2 Note on the Tool Output Files
	5.3 OEM Root Certificate Gen
	5.3.1 Input Parameters
	5.3.2 OEM Root Cert Gen Command

	5.4 OEM Key Certificate Gen
	5.4.1 Input Parameters
	5.4.2 OEM Key Certificate Gen Command

	5.5 OEM Content Certificate Gen
	5.5.1 Input Parameters
	5.5.2 OEM Content Certificate Gen Command

	OEM Debug Certificate Generation
	6.1 OEM Debug-Key Certificate Gen
	6.1.1 Input Parameters
	6.1.2 OEM Debug-Key Gen Command

	6.2 OEM Debug Enabler Certificate Gen
	6.2.1 Input Parameters
	6.2.2 OEM Debug Enabler Certificate Gen Command

	6.3 OEM Debug Developer Certificate Gen
	6.3.1 Input Parameters
	6.3.2 OEM Debug Developer Certificate Gen Command

	Image Generation for Apollo4 SBL
	7.1 Overview of Image Types
	7.1.1 Firmware
	7.1.2 Firmware OTA
	7.1.3 Wired Download
	7.1.4 Wired OTA
	7.1.5 Summary

	7.2 Image Generation Scripts
	7.2.1 Basic Script Usage
	7.2.2 Example Configuration File
	7.2.3 Universal Security Options

	7.3 Generating Specific Image Types
	7.3.1 Firmware OTA Images
	7.3.2 Wired Download Images
	7.3.3 Info0 Update Images
	7.3.4 OEM Certificate Chain Update
	7.3.5 Key Revocation Images

	Downloading Images and Initiating Updates
	8.1 SWD Download Using JLINK
	8.2 Wired Update
	8.3 Over the Air Updates

	UART Wired Update
	9.1 Upgrading Multiple Images in One Step
	9.2 Upgrading Large Binary (Using --wired-chunk-size feature)

	Wired Download Procedure
	10.1 Using Wired Download for OTA

