
Apollo4 Display Kit
NEMA®| GUI-Builder
Ultra-Low Power Apollo SoC Family
A-SOCAP4-UGGA03EN v1.0

USER’S GUIDE

Apollo4 Display Kit NEMA GUI-Builder User’s Guide

A-SOCAP4-UGGA03EN v1.0 2 Confidential and Proprietary

Legal Information and Disclaimers

AMBIQ MICRO INTENDS FOR THE CONTENT CONTAINED IN THE DOCUMENT TO BE ACCURATE AND RELIABLE. THIS
CONTENT MAY, HOWEVER, CONTAIN TECHNICAL INACCURACIES, TYPOGRAPHICAL ERRORS OR OTHER MISTAKES.
AMBIQ MICRO MAY MAKE CORRECTIONS OR OTHER CHANGES TO THIS CONTENT AT ANY TIME. AMBIQ MICRO
AND ITS SUPPLIERS RESERVE THE RIGHT TO MAKE CORRECTIONS, MODIFICATIONS, ENHANCEMENTS,
IMPROVEMENTS AND OTHER CHANGES TO ITS PRODUCTS, PROGRAMS AND SERVICES AT ANY TIME OR TO
DISCONTINUE ANY PRODUCTS, PROGRAMS, OR SERVICES WITHOUT NOTICE.

THE CONTENT IN THIS DOCUMENT IS PROVIDED "AS IS". AMBIQ MICRO AND ITS RESPECTIVE SUPPLIERS MAKE NO
REPRESENTATIONS ABOUT THE SUITABILITY OF THIS CONTENT FOR ANY PURPOSE AND DISCLAIM ALL
WARRANTIES AND CONDITIONS WITH REGARD TO THIS CONTENT, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED
WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-
INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHT.

AMBIQ MICRO DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED
UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT OF
AMBIQ MICRO COVERING OR RELATING TO THIS CONTENT OR ANY COMBINATION, MACHINE, OR PROCESS TO
WHICH THIS CONTENT RELATE OR WITH WHICH THIS CONTENT MAY BE USED.

USE OF THE INFORMATION IN THIS DOCUMENT MAY REQUIRE A LICENSE FROM A THIRD PARTY UNDER THE
PATENTS OR OTHER INTELLECTUAL PROPERTY OF THAT THIRD PARTY, OR A LICENSE FROM AMBIQ MICRO UNDER
THE PATENTS OR OTHER INTELLECTUAL PROPERTY OF AMBIQ MICRO.

INFORMATION IN THIS DOCUMENT IS PROVIDED SOLELY TO ENABLE SYSTEM AND SOFTWARE IMPLEMENTERS TO
USE AMBIQ MICRO PRODUCTS. THERE ARE NO EXPRESS OR IMPLIED COPYRIGHT LICENSES GRANTED HEREUNDER
TO DESIGN OR FABRICATE ANY INTEGRATED CIRCUITS OR INTEGRATED CIRCUITS BASED ON THE INFORMATION IN
THIS DOCUMENT. AMBIQ MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN. AMBIQ MICRO MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING THE
SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR DOES AMBIQ MICRO ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT, AND SPECIFICALLY DISCLAIMS ANY
AND ALL LIABILITY, INCLUDING WITHOUT LIMITATION CONSEQUENTIAL OR INCIDENTAL DAMAGES. “TYPICAL”
PARAMETERS WHICH MAY BE PROVIDED IN AMBIQ MICRO DATA SHEETS AND/OR SPECIFICATIONS CAN AND DO
VARY IN DIFFERENT APPLICATIONS AND ACTUAL PERFORMANCE MAY VARY OVER TIME. ALL OPERATING
PARAMETERS, INCLUDING “TYPICALS” MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY CUSTOMER’S
TECHNICAL EXPERTS. AMBIQ MICRO DOES NOT CONVEY ANY LICENSE UNDER NEITHER ITS PATENT RIGHTS NOR
THE RIGHTS OF OTHERS. AMBIQ MICRO PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS
COMPONENTS IN SYSTEMS INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER APPLICATIONS
INTENDED TO SUPPORT OR SUSTAIN LIFE, OR FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE
AMBIQ MICRO PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
SHOULD BUYER PURCHASE OR USE AMBIQ MICRO PRODUCTS FOR ANY SUCH UNINTENDED OR UNAUTHORIZED
APPLICATION, BUYER SHALL INDEMNIFY AND HOLD AMBIQ MICRO AND ITS OFFICERS, EMPLOYEES, SUBSIDIARIES,
AFFILIATES, AND DISTRIBUTORS HARMLESS AGAINST ALL CLAIMS, COSTS, DAMAGES, AND EXPENSES, AND
REASONABLE ATTORNEY FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PERSONAL INJURY OR
DEATH ASSOCIATED WITH SUCH UNINTENDED OR UNAUTHORIZED USE, EVEN IF SUCH CLAIM ALLEGES THAT
AMBIQ MICRO WAS NEGLIGENT REGARDING THE DESIGN OR MANUFACTURE OF THE PART.

Apollo4 Display Kit NEMA GUI-Builder User’s Guide

A-SOCAP4-UGGA03EN v1.0 3 Confidential and Proprietary

Revision History

Reference Documents

Revision Date Description

1.0 August 27, 2021 Initial release

Document ID Description

A-SOCAP4-PBGA02EN Apollo4 Display Kit Product Brief

A-SOCAP4-GGGA01EN Apollo4 Display Kit Getting Started Guide

A-SOCAP4-PGGA01EN Apollo4 Programmer's Guide

A-SOCAP4-DSGA01EN Apollo4 Datasheet

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Table of Contents

A-SOCAP4-UGGA03EN v1.0 4 Confidential and Proprietary

Table of Contents

1. Introduction ... 8
1.1 System Requirements .. 8
1.2 Terminology .. 9

2. Access and Licensing ... 10
2.1 Product IP Licensing ... 10
2.2 Partner Contacts .. 10

3. Supported Boards and Examples ... 11

4. Getting Started .. 13
4.1 Creating a New Project Using NEMA|GUI-Builder .. 13
4.2 Using GUI in the Design Area .. 15
4.3 Adding Screens .. 15
4.4 Editing the Background of the Screen ... 16
4.5 Importing Images in the Project Assets ... 16
4.6 Adjusting the Design Area Zoom Scale ... 17
4.7 Using the Grid to Align Graphic Items ... 17
4.8 Understanding Graphic Items ... 17
4.9 Saving a Project .. 18
4.10 Recovering a Project from a Backup File .. 19

5. Library Description .. 20
5.1 2D Graphics/Primitives .. 20
5.2 Containers .. 21
5.3 Widgets ... 22
5.4 Images ... 23
5.5 Fonts ... 24

6. Features .. 26

7. Event Manager ... 27

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Table of Contents

A-SOCAP4-UGGA03EN v1.0 5 Confidential and Proprietary

8. NEMA|GFX Architecture .. 29
8.1 Command Lists ... 30

8.1.1 Create ... 31
8.1.2 Bind ... 31
8.1.3 Unbind ... 31
8.1.4 Submit ... 31

8.2 Textures ... 32
8.2.1 Binding Textures .. 32

8.3 Color Formats .. 32
8.4 Blending .. 33

8.4.1 Notations and Conventions ... 34
8.4.2 Predefined Blending Modes .. 34
8.4.3 User Defined Blending Modes .. 36
8.4.4 Additional Operations ... 37

9. Memory Footprint .. 38
9.1 Module Footprint .. 38

9.1.1 Framebuffers ... 39
9.1.2 Images ... 39
9.1.3 Fonts ... 40

9.2 Widget Footprint ... 40

10. Frequently Asked Questions ... 41

Apollo4 Display Kit NEMA GUI-Builder User’s Guide List of Tables

A-SOCAP4-UGGA03EN v1.0 6 Confidential and Proprietary

List of Tables

Table 1-1 Terminology .. 9
Table 2-1 Partner Contacts .. 10
Table 3-1 Supported Boards .. 11
Table 4-1 Keyboard Shortcut for Zooming in/out ... 17
Table 5-1 Primitive Graphic Items ... 20
Table 5-2 Container Graphic Items ... 21
Table 5-3 Widgets Graphic Items .. 22
Table 8-1 Shader Conventions ... 32
Table 8-2 Supported Color Formats ... 33
Table 8-3 Predefined Blending Modes .. 34
Table 8-4 Blend Factors ... 36
Table 8-5 ops Arguments ... 37
Table 9-1 Supported Framebuffers ... 39
Table 9-2 Supported Images ... 39
Table 9-3 Widget Footprint ... 40

Apollo4 Display Kit NEMA GUI-Builder User’s Guide List of Figures

A-SOCAP4-UGGA03EN v1.0 7 Confidential and Proprietary

List of Figures

Figure 4-1 New Project Window .. 13
Figure 4-2 Project Properties Window .. 14
Figure 4-3 GUI in the Design Area ... 15
Figure 4-4 Importing Images as Project Assets .. 16
Figure 4-5 Design area after the addition of graphic items ... 18
Figure 5-1 Font Assets Window ... 24
Figure 7-1 Manage Events in the Event Manager .. 28
Figure 8-1 Predefined Blending Modes .. 35
Figure 8-2 User Defined Blending Modes .. 37

Confidential and Proprietary 8 A-SOCAP4-UGGA03EN v1.0

SECTION

1 Introduction

A partnership with Think Silicon Ltd enables Ambiq to provide the NEMA®|GUI-Builder, a prod-
uct based on Think Silicon’s NemaGFX graphic library. NEMA|GUI-Builder is one of the main
software tools available in NEMA GPU’s ecosystem. Its main purpose is to provide the end users
a simple and flexible tool for rapid graphical user interface (GUI) development, tailored for
ultra-low power systems. Its small memory footprint, command lists features (allowing optimal
CPU-GPU decoupling), low overhead features and lack of any external dependencies make it
an ideal API for developing vivid graphics on ultra-low power devices.

1.1 System Requirements

NEMA|GUI-Builder System Requirements:

Operating System: Windows® (10), Linux® (Ubuntu 32/64-bit)

Screen Resolution: 800×600 or higher

RAM: At least 256MB (minimum)

Hard Drive: 100MB available space.

NOTE: Unless specifically noted, all the examples mentioned in this document are
included in the AmbiqSuite SDK release under directory:
apollo4b_evb_disp_shield\examples\graphics

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Introduction

Confidential and Proprietary 9 A-SOCAP4-UGGA03EN v1.0

1.2 Terminology

Table 1-1 shows the terminology used throughout this document.

Table 1-1: Terminology

Term Definition

Blending Blending is the process by which two or more images are combined in a
weighted manner per-pixel to create merged images.

Fragment A fragment is the data representing a single-pixel primitive. This includes raster
position, color, and texture coordinates.

Interpolation Interpolation is the process of generating intermediate values between two
known data points to give the appearance of continuity and smooth transition.
Several distinct interpolation techniques are used in both computer graphics
and animation such as linear, bilinear, spline and polynomial interpolation.

Pixel A pixel is the smallest addressable element in a digital display device. A pixel is
generally considered as the smallest single component of a digital image and is
often used as a measurement unit.

Primitives Primitives in computer graphics are the simplest geometric objects a system can
handle. Common sets of two-dimensional primitives include lines, points, trian-
gles, and polygons while all other geometric elements are built up from these
primitives. In three-dimensions, properly positioned triangles or polygons can be
used as primitives to model more complex forms.

Raster image
(or bitmapped image)

A raster image (or bitmapped image) is a matrix data structure representing the
actual image content.

Rasterization Rasterization is the process of converting an image described in a vector graph-
ics format to a raster image consisting of pixels for output to a video display or for
storage in bitmap format.

Texel A texel is the fundamental unit of texture space. Textures are represented by
arrays of texels in the same way that pictures are represented by arrays of pixels.

Texture Texture is the digital representation of an object’s surface. In addition to two-
dimensional qualities such as color and transparency, a texture also incorporates
three-dimensional ones such as reflectiveness.

Texture mapping Texture mapping is the process of wrapping a pre-defined texture around any
two or three-dimensional object.

Vector graphics Vector graphics is a technique of using polygons, plane figures bound by a finite
chain of straight-line segments closing a loop, to represent images. Vector graph-
ics have inherent scale up abilities, only depending on the rendering device
capability.

Vertex A vertex is a data structure that describes the location of an object by defining its
corners as positions of points in two or three-dimensional space.

Confidential and Proprietary 10 A-SOCAP4-UGGA03EN v1.0

SECTION

 2 Access and Licensing

The Think Silicon Contributor License Agreement (CLA) can be found at:
https://www.think-silicon.com/?section=2358&language=en_US

2.1 Product IP Licensing

The Apollo4 Display Kit includes a 45-day evaluation period with the PRO Edition
of NEMA|GUI-Builder licensed through Think Silicon S.A.. A user agreement must
be executed between Ambiq Inc. and the customer.

A free version of NEMA|GUI-Builder can be downloaded on the Think Silicon web-
site at https://www.think-silicon.com/?section=2183&language=en_US

2.2 Partner Contacts
Table 2-1: Partner Contacts

Company Contact Email Address

Ambiq Inc. Marc Miller mmiller@ambiq.com

Think Silicon S.A. Ulli Mueller u.mueller@think-silicon.com

https://www.think-silicon.com/?section=2358&language=en_US
https://www.think-silicon.com/?section=2183&language=en_US

Confidential and Proprietary 11 A-SOCAP4-UGGA03EN v1.0

SECTION

3 Supported Boards and
Examples

The Apollo4 Display Kit comes with example projects, which can be found inside the installa-
tion directory, in the examples folder. The goal of these examples is to familiarize the user with
the NEMA|GUI-Builder environment and the way it handles the GUI development process. They
can be instantly simulated to evaluate their behavior at runtime.

The examples include:
Animated screens: Contains six screens that are divided into two screen groups. It depicts

the functionality of swiping inside a screen group, along with how a transition from one
group to another is performed (button-triggered transition).

Gauge: This example contains a button that is connected to a gauge and a digital meter.
Clicking the button will set the value of the gauge and the digital meter using a transition
event.

Watch: This example contains a watch face and graphics. Transitions and animations may
be used to demonstrate performance of the features of a typical watch example on the
hardware.

In each of these examples, the events used to perform their functionality can be inspected in
the Event Manager as described in Section 7 Event Manager on page 27 of this document. It is

Table 3-1: Supported Boards

Board ID Description
AMAP4DISP Apollo4 EVB and Display Shield

454x454 Pixel MIPI/SPI/QSPI AMOLED display
Display laminated ambient light sensor – TSL2540
Display laminated capacitive touch sensor – TMA525C
Touch Screen and ALS Support
256MB Octal-SPI double-data-rate (DDR) enabled PSRAM – APS256XXN
32MB Octal-SPI DDR enabled flash memory – ATXP032
4GB x1/x4/x8 e-MMC module – THGBMNG5D1LBAIT
3-Axis MEMS accelerometer – ADXL362

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Supported Boards and Examples

Confidential and Proprietary 12 A-SOCAP4-UGGA03EN v1.0

recommended not to modify these examples, as their goal is to act as guides for GUI develop-
ment projects. Modifying these examples and saving the changes will overwrite them and
their initial structure cannot be recovered.

NOTE: Unless specifically noted, all the examples mentioned in this docu-
ment are included in the AmbiqSuite SDK release under directory:
apollo4b_evb_disp_shield\examples\graphics

Confidential and Proprietary 13 A-SOCAP4-UGGA03EN v1.0

SECTION

 4 Getting Started

4.1 Creating a New Project Using NEMA|GUI-Builder

Use the following procedure to create a new project using NEMA|GUI Builder:

1. Open the NEMA|GUI Builder application.
2. Click File, then select New Project.
3. Complete the following in the New Project window (Figure 4-2):

a. Click Browse and select the appropriate project directory.
b. Type the project name in the Project Name box.
c. Click Next.

Figure 4-1: New Project Window

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Getting Started

Confidential and Proprietary 14 A-SOCAP4-UGGA03EN v1.0

4. Complete the following in the Properties window (Figure 4-2):

a. Type the appropriate resolution in the Screen Resolution boxes.

b. Click OK.

Note: The wizard will allocate the directory that has been entered for the
project related files (assets, generated files, etc).

Figure 4-2: Project Properties Window

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Getting Started

Confidential and Proprietary 15 A-SOCAP4-UGGA03EN v1.0

4.2 Using GUI in the Design Area

Figure 4-3: GUI in the Design Area

4.3 Adding Screens

Use the following procedure to add screens in the GUI:

1. Click the + (plus) icon in the design area.

2. Set the screen as Main Screen or Secondary in the Screen Type drop-down
option.

NOTE: You must complete the steps in Section 4.1 Creating a New Project Using
NEMA|GUI-Builder on page 13 in order to start designing the GUI in the Design Area
(Figure 4-3)

NOTE: This affects the way they are displayed at the application runtime.
Main Screens have fixed resolution and when they are displayed, they occupy

the whole area of the framebuffer.
Secondary screens have variable resolution so that they can be used along with

a Window item, or they can be displayed as pop-up screens

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Getting Started

Confidential and Proprietary 16 A-SOCAP4-UGGA03EN v1.0

4.4 Editing the Background of the Screen

The background of the screen, which is either a plain color or an image, can be
edited in the Properties panel. Images must be added in the project’s assets before
they can be used in the project. See Section 4.5 Importing Images in the Project
Assets on page 16.

4.5 Importing Images in the Project Assets

Use the following procedure to import images in the project assets:

1. Complete one of the following to add images in the project asset:

Option 1: Click Import in the Properties panel.
Option 2: Click Project, then select Assets/Images.

2. Inspect and modify the project’s images as shown in Figure 4-4.

Figure 4-4: Importing Images as Project Assets

NOTE: The imported images can now be used to customize image compatible
graphics items (e.g., images, containers, and more).

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Getting Started

Confidential and Proprietary 17 A-SOCAP4-UGGA03EN v1.0

4.6 Adjusting the Design Area Zoom Scale

Zooming into or out of the design area is performed by pressing the Ctrl key and
scrolling the mouse wheel, while the mouse cursor is within the design area, or
alternatively by using the keyboard shortcut keys, as shown in Table 4-1:

The zoom scale is displayed at the status bar at the bottom of the design area.

4.7 Using the Grid to Align Graphic Items

The Grid is a feature that eases the alignment of graphic items. It can be shown or
hidden by checking the respective checkbox under the View menu. In addition,
graphic items can be snapped to the grid by selecting the corresponding option
while the grid parameters (width, height, horizontal and vertical offset) can be
modified under the same menu. This guarantees that the items will be aligned on
the desired line of the grid, thus avoiding the manual alignment by setting each of
the coordinates of every item. Note that snapping is available only for the top-left
corner of each item.

4.8 Understanding Graphic Items

Graphic items support generic capabilities such as copy, paste, cut, delete, bring to
front, and send to back. Whenever such actions take place in Containers, the same
action takes place for the contained graphic items.

These items consist of a set of basic items (e.g., sliders that are made of two rectan-
gles and a container). Manipulating the basic items can be performed in the Hierar-
chy window, or by double clicking on them in the Design Area. The user can select
these items in the Hierarchy window and edit their properties in the Properties
window. In addition, supported drag-and-drop operations in such items can also
be performed in the Hierarchy window by dragging the name of the desired item
and dropping it over the name of the desired parent item.

Table 4-1: Keyboard Shortcut for Zooming in/out

Keyboard Shortcut Actions

Ctrl+= (or Ctrl++) Zoom in

Ctrl+- Zoom out

Ctrl+0 Reset zoom to 100%

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Getting Started

Confidential and Proprietary 18 A-SOCAP4-UGGA03EN v1.0

The functionality of complex items is extended as they come with some default
features and can be customized to the demands of each application (e.g., dropping
a circle inside a slider’s container changes the look of the slider’s indicator).

Figure 4-5: Design area after the addition of graphic items

4.9 Saving a Project

A project can be saved in the designated location (project directory) as a *.tsg file.
This will save:

The project’s structure (in xml format)
Assets (images and fonts)
Events (explained in more detail in Section 7 Event Manager on page 27)

A saved project with these features (structure, assets, and events) can then be
opened by the application for further modifications. The NEMA|GUI-Builder is con-
figured to auto-save the current project silently every 2 minutes.

WARNING: When a project has been saved, be cautious when modifying the saved
files outside the NEMA|GUI-Builder. This could break associations between these
files by breaking the project’s structure or even by making the project incompatible
with NEMA|GUI-Builder.

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Getting Started

Confidential and Proprietary 19 A-SOCAP4-UGGA03EN v1.0

4.10 Recovering a Project from a Backup File

The backup files are located inside the project directory in the folder labeled
Backup. In order to recover the project from the Backup files, copy the backup files
to the project sources manually.

Confidential and Proprietary 20 A-SOCAP4-UGGA03EN v1.0

SECTION

 5 Library Description

This section describes the basic structural elements and features of the NEMA|GUI Builder and
Nema|GFX libraries. Examples of proper library usage and general information on the overall
operation scheme are included as provided by Think Silicon S.A.

5.1 2D Graphics/Primitives

Primitives (circle, rectangle, rounded rectangle, image, and label) are elementary
items that perform basic drawing operations:

In the NEMA architecture, these primitives are generated by the Rasterizer module.
The Rasterizer generates the fragments contained inside the Primitive and feeds
them to the Programmable Core for processing. The NEMA GPUs can draw the fol-
lowing Geometry Primitives:

Table 5-1: Primitive Graphic Items

 Graphic Items Description

Circle Circle of desired radius. Can be either filled with a specified
color or not.

Rectangle Rectangle of desired size (width/height). Filled or not.

Rounded Rectangle Same as Rectangle, corners are rounded according to a
desired radius value.

Image Image item that must be associated to an image asset.

Label Label for displaying text information. Must be associated to a
font asset.

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Library Description

Confidential and Proprietary 21 A-SOCAP4-UGGA03EN v1.0

Points
Lines
Filled Triangles
Filled Rectangles
Filled Quadrilaterals

All of the aforementioned Primitives can be processed by the Programmable Core
to do simple operations (e.g., filling with a constant color or gradient, blitting, etc.)
or more advanced ones (e.g., blurring, edge detection, etc.). This functionality can
be extended through software to draw:

Triangles
Rectangles
Polygons
Filled Polygons
Triangle Fans
Triangle Strips
Circles
Filled Circles
Arcs
Rounded Rectangles

5.2 Containers

Containers (container, table, window) are more complex items than primitives as
they can be used in order to group together several other items. More specifically,
items inside a container are grouped so that they can be moved together along
with their parent item (container). Tables are used to group together several con-
tainers for the creation of list-like tables.

Table 5-2: Container Graphic Items

Container Items Description

Container Containers act as parent items to the items they contain. They can
be filled with a selected color or an image.

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Library Description

Confidential and Proprietary 22 A-SOCAP4-UGGA03EN v1.0

5.3 Widgets

Widgets (label button, icon button, radio button, horizontal slider, vertical slider,
digital meter, icon, progress bar, gauge, circular progress, watch face, and digital
clock) are the graphic items that comprise the GUI during application runtime.
Widgets are able to send or receive events to and from other widgets. Some primi-
tives can also act as widgets (e.g., when an image needs to be displayed at the
press of a button, thus the image receives an event). This functionality is achieved
by setting the graphic item’s Interactive property in the Properties window.

Table Tables consist of several sub-items (containers) in a tabular layout.
The number of rows and columns, their dimensions and the dis-
tance between them can be configured. When adding new items,
the last added item is copied to the new ones.

Window The Window can display any screen, other than its parent, within its
area (this can be selected by its corresponding Source Screen prop-
erty). The displayed content is scrollable at runtime and therefore a
Window can be used to create scrollable items (e.g., scrolling
tables).

Table 5-3: Widgets Graphic Items

Widget Items Description

Label Button Button containing text. The background of the text (image or
color) can be configured when the button is pressed and
released.

Icon Button Button containing an icon. The background of the icon
(image or color) can be configured when the button is
pressed and released.

Radio Button Radio buttons must be placed inside of a table for grouping
multiple radio buttons. Checking a radio button will uncheck
all the other radio buttons that belong to the same group or
table.

Vertical/Horizontal
Slider

The slider consists of two rectangles (filled and empty) and a
container as its indicator. The properties of each sub-item can
be edited by selecting the respective item in the Hierarchy
window.

Digital Meter The digital meter is a widget for displaying numerical values.
The background color, precision (number of decimal digits)
and initial value can be edited.

Table 5-2: Container Graphic Items (Continued)

Container Items Description

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Library Description

Confidential and Proprietary 23 A-SOCAP4-UGGA03EN v1.0

For the full list of widgets and associated impact on memory usage, see Section 9.2
Widget Footprint on page 40.

5.4 Images

Images that are used in the GUI must be imported to it before becoming available
for graphic item customization. Images can be imported under the Project menu.
Current supported formats are png, jpg, and svg image formats.

After importing an image to the assets, the target format to be used during run-
time can be modified. The imported images must be converted into a format suit-
able for low power devices. Such formats require direct pixel mapping in the
memory subsystem of the device. NEMA|GUI-Builder currently supports the follow-
ing formats:

RGBA8888 (32 bits-per-pixel)
RGBA5650 (16 bpp)
RGBA5551 (16 bpp)
RGBA4444 (16 bpp)
L8 (luminance-only 8bpp)
A8 (transparency-only 8bpp)
Think Silicon’s proprietary and patented formats:

– TSC™4 (4 bpp)
– TSC™6 (6 bpp)
– TSC™6a (6 bpp with alpha channel support).

The default format for newly imported images is set to RGBA8888.

The format of an associated image asset to an item with an opacity value lower
than 255 must support opacity, otherwise these items will not be displayed prop-
erly during the application runtime. Think Silicon’s formats (TSC4 and TSC6) as well
as RGBA5650 do not support opacity. If an image asset’s format is A8, a default
color can be selected in order to colorize the displayed image.

Besides the target format that affects the application memory requirements, the
texture filtering method (the way that image pixels are rendered on the output
screen pixels) can be selected. This method can either be "point-sampling filtering"

Icon Icon consists of an image and a label. It can be used in cases
whereby pressing it activates a specific action.

Vertical/Horizontal
Progress Bar

The progress bar is widget for displaying the progress attri-
bute. Respective events about setting its value must be man-
ually configured.

Table 5-3: Widgets Graphic Items (Continued)

Widget Items Description

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Library Description

Confidential and Proprietary 24 A-SOCAP4-UGGA03EN v1.0

(also known as "nearest-neighbor filtering") or "bilinear filtering". The former offers
high performance versus poor rendering quality, while the latter trades perfor-
mance for rendering quality.

At the runtime of a deployed project, the generated assets (images and fonts) are
usually stored in a file system (e.g., in an SD card). These stored files are then loaded
to the main memory of the system so that the application can start executing.

5.5 Fonts

Fonts are necessary for customizing any graphic items with text support such as
labels, digital meters, and more. NEMA|GUI-Builder includes the NotoSans_Regu-
lar-12 (font family: NotoSans-Regular, font size: 12) as a default font. New fonts can
be imported from the respective Asset menu. Only true-type-fonts are currently
supported and, consequently .ttf files can only be imported. Figure 5-1 shows the
form used for this purpose:

Figure 5-1: Font Assets Window

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Library Description

Confidential and Proprietary 25 A-SOCAP4-UGGA03EN v1.0

When importing a font, its size, bits-per-pixel, range count, start and end values for
each range need to be set. By using the default values, the imported font will have
size 12, 8 bits-per-pixel and one range that spans from 32 to 127; this is the range
for the ASCII character set.

In order to include characters beyond this range, the start and end values can be
modified. However, as more characters are included, the memory footprint will
increase. Each range can contain characters that belong to the Unicode character
set: 0 up to 10FFFF (hexadecimal value). In addition, the size and bits-per-pixel
parameters directly affect the memory size of the generated fonts as well. In order
to minimize the memory consumption of the application, ensure that these
parameters are fine-tuned before generating the project code.

Confidential and Proprietary 26 A-SOCAP4-UGGA03EN v1.0

SECTION

 6 Features

Each project created in NEMA|GUI-Builder has properties that affect the code generation pro-
cess as well as the generated code. They are as follows:

The number of framebuffers that will be used (single, double, or triple buffering)

The frame-buffer format (RGBA8888, RGBA5650, TSC4, TSC6)

The number of back buffers that will be used (up to two). Two back buffers are necessary
when performing animations such as screen transitions using a nonlinear animation
effect. If the animation buffers are less than two, screen transitions will be performed
using a linear effect and show/hide animations will be performed instantly, without ani-
mation.

The animation-buffers format (RGBA8888, RGBA5650, TSC4, TSC6) To keep the memory
usage to a minimum, the default format of these buffers is TSC4.

The memory pool that will be used for the framebuffers and the back buffers.

The animations frame rate (this sets the animation timer period used in the generated
code)

 The project’s resolution and the code generator options (whether the code generator
will generate the fonts, images and if the generated images will be scaled to the mini-
mum possible resolution as identified by NEMA|GUI-Builder).

The current project path can be navigated to by selecting the Open Directory option.

Only images that are assigned to graphic items can be automatically scaled. A project may
include images that are not assigned to any graphic item. In this case, the tool cannot identify
any suitable resolution for such images, and thus they will be generated at their default resolu-
tion. The images can be manually scaled by using any suitable application before using them in
a NEMA|GUI-Builder project.

Confidential and Proprietary 27 A-SOCAP4-UGGA03EN v1.0

SECTION

 7 Event Manager

NEMA|GUI-Builder utilizes the Event Manager for managing the events associated to a project.
It can be found under the Project menu. This enables the user to inspect, add or remove events
according to the needs of the project. Through the Event Manager, events can be added by set-
ting following parameters:

The Trigger (e.g., a button is released)

The Source item (if applicable)

The Action when the event is triggered

Depending on the Action that should be executed, more data can be added to an event. For
instance, a Screen Transition action needs to know the duration and animation effect, while a
Set Value action should know the value (absolute value or percentage) that will be set. These
attributes are displayed when an event is created, or an existing one is inspected.

Custom events can also be created and their functionality tailored to the project requirements.
This can be performed by selecting a Custom action when creating a new event (or attaching a
new action to an existing event). In the generated code, Actions are handled as callback func-
tions. Therefore, these callback functions needs to be completed with the desired code.

These functions can be found in the custom_callbacks.c file among the generated files.

For ease of use, custom actions are divided into four categories:

One-Shot: The callback function is executed instantly when the event is triggered.

Periodic: Actions are performed in a periodic basis. For example, the callback function
is executed periodically according to the defined period (e.g., a Digital Meter that needs
to set its value every 10 seconds).

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Event Manager

Confidential and Proprietary 28 A-SOCAP4-UGGA03EN v1.0

Transition: This action can be used to change an attribute of the target item (e,g., opac-
ity) in a continuous way. The Transition has a specific duration, defined by the user and
during runtime, it keeps track of its progress.

Periodic Transition: Transitions that are performed every set number of seconds. The
user must define both the duration and the period of this action.

After a custom action has been created, it can be configured by changing its corresponding
attributes (Type, Duration and Period) in the Event Manager. Figure 7-1 depicts how the events
can be managed in the Event Manager.

Figure 7-1: Manage Events in the Event Manager

Confidential and Proprietary 29 A-SOCAP4-UGGA03EN v1.0

SECTION

 8 NEMA|GFX Architecture

NEMA|GFX Library is a low-level library that interfaces directly with the NEMA GPUs and pro-
vides a software abstraction layer to organize and employ drawing commands with ease and
efficiency. The target of NEMA|GFX is to be able to be used as a back-end to existing APIs (such
as OpenGL, DirectFB, or any proprietary one) but also to expose higher level drawing functions,
so as to be used as a standalone Graphics API. Its small footprint, efficient design and lack of
any external dependencies, makes it ideal for use in embedded applications. By leveraging
NEMA’s sophisticated architecture, Ambiq MCUs achieve great performance with minimum
CPU usage and power consumption.

NEMA|GFX includes a set of higher level calls, forming a complete standalone Graphics API for
applications in systems where no other APIs are needed. This API is able to carry out draw oper-
ations from as simple as lines, triangles and quadrilaterals to more complex ones like blitting
and perspective correct texture mapping.

A developer may use only the lower layers of the architecture that provides communication to
the NEMA hardware, synchronization and basic primitives drawing. The very thin Hardware
Abstraction Layer allows for fast integration to the underlying hardware. The upper low level
drawing API acts as a back-end interface for accelerating any higher third-party Graphics API.

NEMA|GFX is built on a modular architecture. These modules are generally stacked one over
another, forming a layered scheme. This gives the developer the freedom to tailor the software
stack according to ones needs.

The lowest layer is a thin Hardware Abstraction Layer (HAL). It includes some hooks for basic
interfacing with the hardware such as register accessing, interrupt handling and more.

The layer above is the Command List Manager. It provides the appropriate API for creating,
organizing and issuing Command Lists. This topic is discussed in detail in Section 8.1 Command
Lists on page 30 of this document.

Above the Command List Manager lies the Hardware Programming Layer (HPL). This is a set of
helper functions that assemble commands for programming the NEMA GPU. These commands

Apollo4 Display Kit NEMA GUI-Builder User’s Guide NEMA|GFX Architecture

Confidential and Proprietary 30 A-SOCAP4-UGGA03EN v1.0

write to the NEMA’s Configuration Register File, which is used to program the submodules of
the GPU.

Alongside the HPL resides the Blender module. This module programs NEMA’s Programmable
Processing Core. It creates binary executables for the Core. These executables correspond to
the various blending modes that are supported by the NEMA|GFX Library.

On top of the NEMA|GFX stack lies the NEMA|GFX Graphics API. This API offers function calls to
draw geometry primitives (lines, triangles, quadrilaterals etc.), blit images, render text, trans-
form geometry objects, perform perspective correct texture mapping etc. When using
NEMA|GFX as a back-end for a third party Graphics API, much of the NEMA|GFX Graphics API
may be disabled.

For additional information on NEMA|GFX features and architecture, please see the NEMA|GFX -
API document on the Think Silicon website at:
https://www.think-silicon.com/?section=2889&language=en_US

8.1 Command Lists

In order to decouple CPU and GPU execution and achieve both better performance
and lower power consumption, NEMA GPUs incorporate an advanced Command
List Processor (CLP), capable of reading entire lists of commands from the main
memory and relay them to the Configuration Register File. The CPU pre-assembles
Command Lists (CL) prior to submitting them to the Command List Processor for
execution, while a single Command List can be submitted multiple times. This
approach alleviates the CPU from recalculating drawing operations for repetitive
tasks, resulting in more efficient resource utilization. The steps for writing com-
mands to the Configuration Registers through the Command List Processor are the
following:

1. The CPU assembles a Command List, through the NEMA|GFX Library.

2. The CPU submits the Command List for execution. The Command List Processor is
informed of a pending Command List.

3. The Command List Processor reads the Command List from the System Memory.

4. The Command List Processor relays the commands to the Configuration Register File.

Command List (CL) usage facilitates GPU and CPU decoupling, while its inherent
re-usability greatly contributes to the decrease of the computational effort of the
CPU. This approach renders the overall architecture capable of drawing compli-
cated scenes while keeping the CPU workload to a minimum. The design principles
of CLs allow developers to extend the features of their application while optimiz-
ing its functionality. CL is capable of jumping to another CL, thus forming a chain of
seamlessly interconnected commands. In addition, a CL is able to branch to
another CL and once the branch execution is concluded, resume its functionality
after the branching point.

https://www.think-silicon.com/?section=2889&language=en_US

Apollo4 Display Kit NEMA GUI-Builder User’s Guide NEMA|GFX Architecture

Confidential and Proprietary 31 A-SOCAP4-UGGA03EN v1.0

The NEMA|GFX Library helps developers to easily take advantage of all of these fea-
tures through certain basic function calls that trigger the whole spectrum of CL
capabilities. A list of the most fundamental subset of CLs is listed in the following
subsections.

8.1.1 Create

The most straightforward command for initiating a simple coding example is the
"Create" command which is listed below:

nema_cmdlist_t nema_cl_create (void)

This fundamental command allocates and initializes a new Command List for later
use.

8.1.2 Bind

This command sets the referred Command List as active. Each subsequent drawing
call will incrementally be incorporated in the active Command List. At any time, all
drawing operations should be called when there is a bound Command List.

nema_cl_bind_cmdlist (nema_cmdlist_t *cl)

8.1.3 Unbind

Unbind the currently bound Command List.

nema_cl_unbind_cmdlist (void)

8.1.4 Submit

Submit the referred Command List for execution. If this CL is currently the one that
is bound, this call unbinds it. When a CL is submitted for execution, it should never
be altered until it finishes execution.

nema_cl_submit_cmdlist (nema_cmdlist_t *cl)

Writing in such a CL results in undefined behavior. A typical routine for drawing
would be the following:

nema_cmdlist_t cl = nema_cl_create ();// Create a new CL
nema_cl_bind_cmdlist (& cl); // Bind it

/* Drawing Operations */ // Draw scene

nema_cl_unbind_cmdlist (); // Unbind CL (optional)
nema_cl_submit_cmdlist (& cl); // Submit CL for execution

Apollo4 Display Kit NEMA GUI-Builder User’s Guide NEMA|GFX Architecture

Confidential and Proprietary 32 A-SOCAP4-UGGA03EN v1.0

8.2 Textures

Texture is the digital representation of an object’s surface. In addition to two-
dimensional qualities such as color and transparency, a texture also incorporates
three-dimensional ones such as reflectiveness.

Filtering: pointer sampling, bilinear filtering
Wrapping Mode: clamp, repeat, border, mirror

8.2.1 Binding Textures

The hardware allows a single shader to read from and/or write to 4 different tex-
tures. These textures must be bound before the Shader is submitted for execution.
NEMA|GFX uses pre-assembled Shaders to perform blending operations.

void nema_bind_dst_tex (uint32_t baseaddr_phys,

 uint32_t width , uint32_t height,

 nema_tex_format_t format , int32_t stride)

The above function binds a texture to serve as a destination. The texture’s attri-
butes (GPU address, width, height, format and stride) are written inside the bound
CL. Each subsequent drawing operation will influence this destination’s texture.
Most common graphics operations include image blitting (copying). This includes
drawing a background image, GUI icons, and font rendering. The following com-
mand binds a texture to be used as foreground:

void nema_bind_src_tex (uint32_t baseaddr_phys ,
 uint32_t width , uint32_t height,
 nema_tex_format_t format , int32_t stride,
 nema_tex_mode_tmode);

8.3 Color Formats

NEMA GPUs natively support a large set of texture formats. They are capable of
performing fast read and write operations by executing on-the-fly color conver-
sion/decompression. Native formats expand from full 32-bit RGBA to 1-bit black
and white colors, together with an optional proprietary compressed 4-bit-per-pixel

Table 8-1: Shader Conventions

Textures Description

NEMA_TEX0 Destination/Background Texture

NEMA_TEX1 Foreground Texture

NEMA_TEX2 Background Texture

NEMA_TEX3 Depth Buffer

Apollo4 Display Kit NEMA GUI-Builder User’s Guide NEMA|GFX Architecture

Confidential and Proprietary 33 A-SOCAP4-UGGA03EN v1.0

lossy format. These can all be used as source or destination textures. The list of all
supported formats is presented in Table 8-2 below.

8.4 Blending

Alpha blending refers to a convex combination of two colors – a translucent source
(foreground) and a destination (background), allowing transparency effects. The
basic blending algorithms define a set of mathematical operations for the Color
channels (RGB) and the Alpha (transparency) channel of a fragment. The blending
process is essential for rendering fonts and/or creating GUIs. In the NEMA graphics
pipeline, blending is carried out in the Graphics Core.

The NEMA Graphics Core is a programmable VLIW processor, which allows rapid
calculations between colors. Normally, such per-fragment calculations are an over-
whelming computational burden for a CPU or MCU. The NEMA Graphics Core is
programmed through instructions in binary form, called Shaders. However, in
embedded applications, running a compiler for creating these kinds of Shaders is
not a realistic scenario.

NEMA|GFX Library provides a lightweight and user-friendly interface that employs
pre-assembled commands to create a powerful set of blending algorithms. NEMA
Graphics Core can be programmed through the following functions:

void nema_set_blend_fill (nema_blend_mode_t blending_mode)
void nema_set_blend_blit (nema_blend_mode_t blending_mode)

Table 8-2: Supported Color Formats

Color Mode Description
RGBX8888 32-bit color with no transparency
RGBA8888 32-bit color with transparency
XRGB8888 32-bit color with no transparency
ARGB8888 32-bit color with transparency
BGRA8888 32-bit color with transparency
BGRX8888 32-bit color with no transparency
RGBA5650 16-bit color with transparency
RGBA5551 16-bit color with 1-bit transparency
RGBA4444 16-bit color with transparency
RGBA3320 8-bit color with no transparency

L8 8-bit gray scale (luminance) color
A8 8-bit translucent color
L2 2-bit grayscale (luminance) color
L4 4-bit grayscale (luminance) color

BW1 1-bit color (black or white)
UYVY UYVY color
TSC4 4-bit proprietary compressed
YUV YUV

Z24_8 32-bit (24+4) depth and stencil
Z16 16-bit depth

Apollo4 Display Kit NEMA GUI-Builder User’s Guide NEMA|GFX Architecture

Confidential and Proprietary 34 A-SOCAP4-UGGA03EN v1.0

These functions are defined in NemaGFX_blender.h file. They should be used on fill
and blit operations respectively. The blending_mode argument is possible to be a
predefined blending mode or a more refined User Defined Mode.

8.4.1 Notations and Conventions

Blending requires a series of calculations between the source and destination color
fragments for producing the final color, which will be written in memory. The Color
and Alpha channels are noted as follows:

Sc: Source Color

Sa: Source Alpha

Sf: Source Blend Factor (multiplier)

Dc: Destination Color

Da: Destination Alpha

Df: Destination Blend Factor (multiplier)

Fc: Final Color

Fa: Final Alpha

Cc: Constant Color

Ca: Constant Alpha

The Color and Alpha values range from 0 to 1. Therefore, each calculation result is
also constrained to the same range. For consistency, Color and Alpha calculations
are always described separately, since these calculations may not be identical.
When a constant color is used (noted as Cc and Ca), it can be set using the following
function:

void nema_set_const_color (uint32_t rgba)

8.4.2 Predefined Blending Modes

Predefined Blending Modes are a set of commonly used modes, each implying dif-
ferent calculations between the source and destination colors for Color (RGB)
channel and Alpha channel respectively. Table 8-3 presents the complete list of the
available Predefined Blending Modes along with the corresponding calculations
that produce the final fragment color. Figure 8-1 shows the result for each Pre-
defined Blending Mode.

Table 8-3: Predefined Blending Modes

Predefined Blending Modes RGB ALPHA

NEMA_BL_SIMPLE Sc * Sa + Dc * (1 - Sa) Sa * Sa + Da * (1 - Sa)

NEMA_BL_CLEAR 0 0

Apollo4 Display Kit NEMA GUI-Builder User’s Guide NEMA|GFX Architecture

Confidential and Proprietary 35 A-SOCAP4-UGGA03EN v1.0

Figure 8-1: Predefined Blending Modes

Drawing a translucent red rectangle would require the following calls:

nema_set_blend_fill(NEMA_BL_SIMPLE);
nema_fill_rect (52, 52, 14, 4, nema_rgba(0xff, 0, 0, 0x80));

NEMA_BL_SRC Sc Sa

NEMA_BL_SRC_OVER Sc + Dc * (1 - Sa) Sa + Da * (1 - Sa)

NEMA_BL_DST_OVER Sc * (1 - Da) + Dc Sa * (1 - Da) + Da

NEMA_BL_SRC_IN Sc * Da Sa * Da

NEMA_BL_DST_IN Dc * Sa Da * Sa

NEMA_BL_SRC_OUT Sc * (1 - Da) Sa * (1 - Da)

NEMA_BL_DST_OUT Dc * (1 - Sa) Da * (1 - Sa)

NEMA_BL_SRC_ATOP Sc * Da + Dc * (1 - Sa) Sa * Da + Da * (1 - Sa)

NEMA_BL_DST_ATOP Sc * (1 - Da) + Dc * Sa Sa * (1 - Da) + Da * Sa

NEMA_BL_ADD Sc + Dc Sa + Da

NEMA_BL_XOR Sc * (1 - Da) + Dc * (1 - Sa) Sa * (1 - Da) + Da * (1 - Sa)

TIP: When in doubt, usually the NEMA_BL_SIMPLE blending mode is the safest
choice. The overall process starts with an empty Framebuffer and then performs blit-
ting on the textures.

Table 8-3: Predefined Blending Modes (Continued)

Predefined Blending Modes RGB ALPHA

Apollo4 Display Kit NEMA GUI-Builder User’s Guide NEMA|GFX Architecture

Confidential and Proprietary 36 A-SOCAP4-UGGA03EN v1.0

8.4.3 User Defined Blending Modes

Developers can create custom blending modes by using different factors for the
source and destination color, through the following function:

nema_blend_mode_t nema_blending_mode(nema_blend_factor_t src,
 nema_blend_factor_t dst,
 nema_blend_op_t ops);

The ops argument of the above function refers to additional operations, should be
set to zero (0). The calculations result to the final color:

Fc = Sc · Sf + Dc · Df
Fa = Sa · Sf + Da · Df

The Blend Factors are listed in Table 8-4. Figure 8-2 on page 37 shows the available
custom blending modes. As a result, the previous example may be rewritten as:

nema_set_blend_fill(nema_blending_mode (NEMA_BF_SRCALPHA,
NEMA_BF_INVSRCALPHA , 0));
nema_fill_rect(52, 52, 14, 4, nema_rgba(0 xff , 0 , 0 , 0x80));

Table 8-4: Blend Factors

Blend Factors Blend Factors (Sf or Df)

NEMA_BF_ZERO 0
NEMA_BF_ONE 1
NEMA_BF_SRCCOLOR Sc
NEMA_BF_INVSRCCOLOR (1 - Sc)
NEMA_BF_SRCALPHA Sa
NEMA_BF_SRC_INVSRCALPHA (1 - Sa)
NEMA_BF_DESTALPHA Da
NEMA_BF_INVDESTALPHA (1 - Da)
NEMA_BF_DESTCOLOR Dc
NEMA_BF_INVDESTCOLOR (1 - Dc)
NEMA_BF_CONSTCOLOR Cc
NEMA_BF_CONSTALPHA Ca

Apollo4 Display Kit NEMA GUI-Builder User’s Guide NEMA|GFX Architecture

Confidential and Proprietary 37 A-SOCAP4-UGGA03EN v1.0

Figure 8-2: User Defined Blending Modes

8.4.4 Additional Operations

NEMA|GFX Library allows the following operations, which can be applied together
with the previously mentioned blending modes through the function:

nema_blend_mode_t nema_blending_mode (nema_blend_factor_t src,
 nema_blend_factor_t dst,
 nema_blend_op_t ops)

The additional supported operations are listed in Table 8-5 below.

Table 8-5: ops Arguments

ops Arguments Description

SRC_MODULATE_A Multiply source alpha channel with Ca constant before blending. Ca is
defined by calling NemaGFX_set_const_color().

SRC_FORCE_A Replace source alpha channel with Ca before blending. Overrides
SRC_MODULATE_A option. Ca is defined by calling
NemaGFX_set_const_color().

SRC_COLORIZE Multiply source color channels (RGB) with Cc before blending. Cc is
defined by calling NemaGFX_set_const_color().

SRC_COLORKEY Ignore fragment when source color matches the source color key,
which is defined by calling NemaGFX_set_src_color_key().

DST_COLORKEY Ignore fragment when destination color matches the destination color
key, which is defined by calling NemaGFX_set_dst_color_key().

Confidential and Proprietary 38 A-SOCAP4-UGGA03EN v1.0

SECTION

 9 Memory Footprint

9.1 Module Footprint

The memory requirement of an application depends on the features incorporated
in it.

When the code is generated, a report file (report.txt) is created along the gener-
ated files that contains the memory requirements for each font and image of the
project. This file can be reviewed and some project parameters can be revised (e.g.,
using compressed image formats instead of RGBA8888, use less bits per pixel in
fonts etc.) to reduce the memory consumption.

The generated code consists of the project specific files (generated images, wid-
gets, fonts, framebuffers and events) and a library that orchestrates the generated
application’s runtime. It contains the C implementation of all of the widgets, ges-
tures, interactions, and screen transitions, that are common for every generated
project. This library is labeled NemaGUI and it can be found in the generated files
of a project.

NemaGUI consumes 25KB of memory with all of its features (widgets, animations,
and event types) included. This can be split into 12KB for its core and 13KB for all
the widget implementations. For example, a “Hello World” application with a sim-
ple screen (no images and fonts), and excluding the framebuffer, can use as little as
27KB. Additional features will increase the memory consumption of the applica-
tion.

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Memory Footprint

Confidential and Proprietary 39 A-SOCAP4-UGGA03EN v1.0

9.1.1 Framebuffers

The memory usage of framebuffers is application specific and depends on the fol-
lowing:

The number of framebuffers an application makes use of (single framebuffer,
double buffering, and animation buffers)

The resolution (W×H)
The format (compressed/uncompressed)

Table 9-1 lists the currently supported formats and associated memory usage.

9.1.2 Images

The memory usage of images is also application specific. The png, jpg, and svg
image file types can be imported and used in the design. At code generation, they
are converted to formats suitable for the GPU:

A generated image consumes (in bytes) W*H*bytes_per_pixel. To minimize the
memory footprint, big images are automatically scaled down if it is suitable. For
example, if a large png image asset with a resolution of 1024×768 is used in a wid-
get with actual resolution of 70×70, then the generated image will be 70×70 as
well.

Table 9-1: Supported Framebuffers

Framebuffers Bytes/Pixel

RGBA8888 4

RGBA5650 2

TSC4 0.5

TSC6 0.75

Table 9-2: Supported Images

Images Bytes/Pixel

RGBA8888 4

RGBA5650 2

RGBA5551 2

RGBA4444 2

RGBA3320 1

TSC4 0.5

TSC6 0.75

TSC6A 0.75

L8 1

A8 1

Apollo4 Display Kit NEMA GUI-Builder User’s Guide Memory Footprint

Confidential and Proprietary 40 A-SOCAP4-UGGA03EN v1.0

9.1.3 Fonts

The memory usage of fonts depends on how many fonts will be used. The footprint
of a font depends on its:

Size (the bigger the font the more memory it consumes)
Bits per pixel (more bits per pixel result in fonts that consume more memory)
Unicode Ranges (the default range is ASCII, more ranges contain more charac-

ters and therefore need more memory)
Kerning (if kerning is enabled it requires memory to store the kerning pairs)

These parameters are configurable via the Font form (see Section 5.5 Fonts on page
24) in NEMA|GUI Builder.

9.2 Widget Footprint

Table 9-3: Widget Footprint

Widget Bytes

Screen 60

Circle 56

Rectangle 60

Rounded Rectangle 60

Image 60

Label 84

Container 64

Table 56

Container Array 56

Window 56

Label Button 72

Icon Button 72

Radio Button 72

Checkbox 72

Horizontal Slider 68

Vertical Slider 68

Digital Meter 92

Icon 56

Horizontal Progress Bar 76

Vertical Progress Bar 76

Gauge 100

Circular Progress 76

Watch Face 76

Confidential and Proprietary 41 A-SOCAP4-UGGA03EN v1.0

SECTION

 10 Frequently Asked Questions

This section shows some of the frequently asked questions.

1. Are all the NEMA|GUI Builder features included in the package?

Yes. The Apollo4 Display Kit includes a 45-day evaluation period with the PRO Edi-
tion of NEMA|GUI-Builder licensed through Think Silicon S.A.. The Standard Edition
which includes all features with limitations is available for download on the Think
Silicon website.

2. The project is compiled without errors but, when running the application, the display
does not work.

This issue may be caused by one of the following:

Stack size is too low.
Wrong initialization of the display controller.
Wrong configuration of the display interface.

For additional inquiries on the Apollo4 Display Kit, please visit our technical support
page: https://support.ambiq.com/

https://support.ambiq.com/

© 2021 Ambiq Micro, Inc. All rights reserved.
6500 River Place Boulevard, Building 7, Suite 200, Austin, TX 78730

www.ambiq.com
sales@ambiq.com
+1 (512) 879-2850

A-SOCAP4-UGGA03EN v1.0
August 2021

	Introduction
	1.1 System Requirements
	1.2 Terminology

	Access and Licensing
	2.1 Product IP Licensing
	2.2 Partner Contacts

	Supported Boards and Examples
	Getting Started
	4.1 Creating a New Project Using NEMA|GUI-Builder
	4.2 Using GUI in the Design Area
	4.3 Adding Screens
	4.4 Editing the Background of the Screen
	4.5 Importing Images in the Project Assets
	4.6 Adjusting the Design Area Zoom Scale
	4.7 Using the Grid to Align Graphic Items
	4.8 Understanding Graphic Items
	4.9 Saving a Project
	4.10 Recovering a Project from a Backup File

	Library Description
	5.1 2D Graphics/Primitives
	5.2 Containers
	5.3 Widgets
	5.4 Images
	5.5 Fonts

	Features
	Event Manager
	NEMA|GFX Architecture
	8.1 Command Lists
	8.1.1 Create
	8.1.2 Bind
	8.1.3 Unbind
	8.1.4 Submit

	8.2 Textures
	8.2.1 Binding Textures

	8.3 Color Formats
	8.4 Blending
	8.4.1 Notations and Conventions
	8.4.2 Predefined Blending Modes
	8.4.4 Additional Operations

	Memory Footprint
	9.1 Module Footprint
	9.1.2 Images
	9.1.3 Fonts

	9.2 Widget Footprint

	Frequently Asked Questions

