Apollo Register Documentation  v${version}
SECURITY - Security Interfaces

SECURITY Register Index

  0x00000000:   CTRL - Control
  0x00000010:   SRCADDR - Source Address
  0x00000020:   LEN - Length
  0x00000030:   RESULT - CRC Seed/Result
  0x00000078:   LOCKCTRL - LOCK Control
  0x0000007C:   LOCKSTAT - LOCK Status
  0x00000080:   KEY0 - Key0
  0x00000084:   KEY1 - Key1
  0x00000088:   KEY2 - Key2
  0x0000008C:   KEY3 - Key3

CTRL - Control

Address:

  Instance 0 Address:   0x40030000

Description:

Control

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CRCERROR
0x0
RSVD
0x0
FUNCTION
0x0
RSVD
0x0
ENABLE
0x0

Bits Name RW Description
31 CRCERROR RO CRC Error Status - Set to 1 if an error occurs during a CRC operation. Cleared when CTRL register is written (with any value). Usually indicates an invalid address range.

30:8 RSVD RO RESERVED

7:4 FUNCTION RW Function Select

CRC32 = 0x0 - Perform CRC32 operation
RAND = 0x1 - DMA pseudo-random number stream based on CRC value
GENADDR = 0x2 - Generate DMA stream based on address
3:1 RSVD RO RESERVED

0 ENABLE RW Function Enable. Software should set the ENABLE bit to initiate a CRC operation. Hardware will clear the ENABLE bit upon completion.


SRCADDR - Source Address

Address:

  Instance 0 Address:   0x40030010

Description:

Source Address

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADDR
0x0

Bits Name RW Description
31:0 ADDR RW Source Buffer Address. Address may be byte aligned, but the length must be a multiple of 4 bits.


LEN - Length

Address:

  Instance 0 Address:   0x40030020

Description:

Length

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD
0x0
LEN
0x0
RSVD
0x0

Bits Name RW Description
31:24 RSVD RO RESERVED

23:2 LEN RW Buffer size (bottom two bits assumed to be zero to ensure a multiple of 4 bytes)

1:0 RSVD RO RESERVED


RESULT - CRC Seed/Result

Address:

  Instance 0 Address:   0x40030030

Description:

CRC Seed/Result

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CRC
0x0

Bits Name RW Description
31:0 CRC RW CRC Seed/Result. Software must seed the CRC with 0xFFFFFFFF before starting a CRC operation (unless the CRC is continued from a previous operation).


LOCKCTRL - LOCK Control

Address:

  Instance 0 Address:   0x40030078

Description:

LOCK Control

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSVD
0x0
SELECT
0x0

Bits Name RW Description
31:8 RSVD RO RESERVED

7:0 SELECT RW LOCK Function Select register.

CUSTOMER_KEY = 0x1 - Unlock Customer Key (access to top half of INFO0)
NONE = 0x0 - Lock Control should be set to NONE when not in use.

LOCKSTAT - LOCK Status

Address:

  Instance 0 Address:   0x4003007C

Description:

LOCK Status

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STATUS
0x0

Bits Name RW Description
31:0 STATUS RO LOCK Status register. This register is a bit mask for which resources are currently unlocked. These bits are one-hot per resource.

CUSTOMER_KEY = 0x1 - Customer Key is unlocked (access is granted to top half of INFO0)
NONE = 0x0 - No resources are unlocked

KEY0 - Key0

Address:

  Instance 0 Address:   0x40030080

Description:

Key0

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
KEY0
0x0

Bits Name RW Description
31:0 KEY0 WO Bits [31:0] of the 128-bit key should be written to this register. To protect key values, the register always returns 0x00000000.


KEY1 - Key1

Address:

  Instance 0 Address:   0x40030084

Description:

Key1

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
KEY1
0x0

Bits Name RW Description
31:0 KEY1 WO Bits [63:32] of the 128-bit key should be written to this register. To protect key values, the register always returns 0x00000000.


KEY2 - Key2

Address:

  Instance 0 Address:   0x40030088

Description:

Key2

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
KEY2
0x0

Bits Name RW Description
31:0 KEY2 WO Bits [95:64] of the 128-bit key should be written to this register. To protect key values, the register always returns 0x00000000.


KEY3 - Key3

Address:

  Instance 0 Address:   0x4003008C

Description:

Key3

Example Macro Usage:

//
// Register access is all performed through the standard CMSIS structure-based
// interface. This includes module-level structure definitions with members and
// bitfields corresponding to the physical registers and bitfields within each
// module. In addition, Ambiq has provided instance-level macros for modules
// that have more than one physical instance and a generic AM_REGVAL() macro
// for directly accessing memory by address.
//
// The following examples show how to use these structures and macros:

// Setting the ADC configuration register...
AM_REGVAL(0x50010000) = 0x1234;              // by address.
ADC->CFG = 0x1234;                           // by structure pointer.
ADCn(0)->CFG = 0x1234;                       // by structure pointer (with instance number).

// Changing the ADC clock...
ADCn(0)->CFG_b.CLKSEL = 0x2;                 // by raw value.
ADCn(0)->CFG_b.CLKSEL = ADC_CFG_CLKSEL_HFRC; // using an enumerated value.

Register Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
KEY3
0x0

Bits Name RW Description
31:0 KEY3 WO Bits [127:96] of the 128-bit key should be written to this register. To protect key values, the register always returns 0x00000000.