
Apollo5 Family OEM Provisioning
Tools
Ultra-Low Power Apollo SoC Family
A-SOCAP5-UGGA03EN v1.0

USER’S GUIDE

Apollo5 Family OEM Provisioning Tools User’s Guide

@ambiq | all rights reserved 2 A-SOCAP5-UGGA03EN v1.0

Legal Information and Disclaimers

AMBIQ MICRO INTENDS FOR THE CONTENT CONTAINED IN THE DOCUMENT TO BE ACCURATE AND RELIABLE. THIS
CONTENT MAY, HOWEVER, CONTAIN TECHNICAL INACCURACIES, TYPOGRAPHICAL ERRORS OR OTHER MISTAKES.
AMBIQ MICRO MAY MAKE CORRECTIONS OR OTHER CHANGES TO THIS CONTENT AT ANY TIME. AMBIQ MICRO
AND ITS SUPPLIERS RESERVE THE RIGHT TO MAKE CORRECTIONS, MODIFICATIONS, ENHANCEMENTS,
IMPROVEMENTS AND OTHER CHANGES TO ITS PRODUCTS, PROGRAMS AND SERVICES AT ANY TIME OR TO
DISCONTINUE ANY PRODUCTS, PROGRAMS, OR SERVICES WITHOUT NOTICE.

THE CONTENT IN THIS DOCUMENT IS PROVIDED "AS IS". AMBIQ MICRO AND ITS RESPECTIVE SUPPLIERS MAKE NO
REPRESENTATIONS ABOUT THE SUITABILITY OF THIS CONTENT FOR ANY PURPOSE AND DISCLAIM ALL
WARRANTIES AND CONDITIONS WITH REGARD TO THIS CONTENT, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED
WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-
INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHT.

AMBIQ MICRO DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED
UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT OF
AMBIQ MICRO COVERING OR RELATING TO THIS CONTENT OR ANY COMBINATION, MACHINE, OR PROCESS TO
WHICH THIS CONTENT RELATE OR WITH WHICH THIS CONTENT MAY BE USED.

USE OF THE INFORMATION IN THIS DOCUMENT MAY REQUIRE A LICENSE FROM A THIRD PARTY UNDER THE
PATENTS OR OTHER INTELLECTUAL PROPERTY OF THAT THIRD PARTY, OR A LICENSE FROM AMBIQ MICRO UNDER
THE PATENTS OR OTHER INTELLECTUAL PROPERTY OF AMBIQ MICRO.

INFORMATION IN THIS DOCUMENT IS PROVIDED SOLELY TO ENABLE SYSTEM AND SOFTWARE IMPLEMENTERS TO
USE AMBIQ MICRO PRODUCTS. THERE ARE NO EXPRESS OR IMPLIED COPYRIGHT LICENSES GRANTED HEREUNDER
TO DESIGN OR FABRICATE ANY INTEGRATED CIRCUITS OR INTEGRATED CIRCUITS BASED ON THE INFORMATION IN
THIS DOCUMENT. AMBIQ MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN. AMBIQ MICRO MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING THE
SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR DOES AMBIQ MICRO ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT, AND SPECIFICALLY DISCLAIMS ANY
AND ALL LIABILITY, INCLUDING WITHOUT LIMITATION CONSEQUENTIAL OR INCIDENTAL DAMAGES. “TYPICAL”
PARAMETERS WHICH MAY BE PROVIDED IN AMBIQ MICRO DATA SHEETS AND/OR SPECIFICATIONS CAN AND DO
VARY IN DIFFERENT APPLICATIONS AND ACTUAL PERFORMANCE MAY VARY OVER TIME. ALL OPERATING
PARAMETERS, INCLUDING “TYPICALS” MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY CUSTOMER’S
TECHNICAL EXPERTS. AMBIQ MICRO DOES NOT CONVEY ANY LICENSE UNDER NEITHER ITS PATENT RIGHTS NOR
THE RIGHTS OF OTHERS. AMBIQ MICRO PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS
COMPONENTS IN SYSTEMS INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER APPLICATIONS
INTENDED TO SUPPORT OR SUSTAIN LIFE, OR FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE
AMBIQ MICRO PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
SHOULD BUYER PURCHASE OR USE AMBIQ MICRO PRODUCTS FOR ANY SUCH UNINTENDED OR UNAUTHORIZED
APPLICATION, BUYER SHALL INDEMNIFY AND HOLD AMBIQ MICRO AND ITS OFFICERS, EMPLOYEES, SUBSIDIARIES,
AFFILIATES, AND DISTRIBUTORS HARMLESS AGAINST ALL CLAIMS, COSTS, DAMAGES, AND EXPENSES, AND
REASONABLE ATTORNEY FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PERSONAL INJURY OR
DEATH ASSOCIATED WITH SUCH UNINTENDED OR UNAUTHORIZED USE, EVEN IF SUCH CLAIM ALLEGES THAT
AMBIQ MICRO WAS NEGLIGENT REGARDING THE DESIGN OR MANUFACTURE OF THE PART.

Apollo5 Family OEM Provisioning Tools User’s Guide

@ambiq | all rights reserved 3 A-SOCAP5-UGGA03EN v1.0

Revision History

Reference Documents

Revision Date Description

1.0 May 2025 Initial Release.

Document ID Description

A-SOCAP5-UGGA04EN Apollo5 Security User’s Guide

A-SOCAP5-UGGA02EN Apollo5 Family Secure Update User’s Guide

A-SOCAP5-UGGA01EN Apollo5 Family MRAM Recovery User’s Guide

Apollo5 Family OEM Provisioning Tools User’s Guide Table of Contents

@ambiq | all rights reserved 4 A-SOCAP5-UGGA03EN v1.0

Table of Contents

1. Introduction ... 9
1.1 System Requirements .. 9
1.2 Terminology .. 9

2. Keys ... 11
2.1 Key Gen Utility .. 12

2.1.1 Input Parameters ... 12
2.1.2 Key Gen Command ... 12

2.2 Signing Server Plugin Support ... 13

3. OEM Provisioning .. 14
3.1 OEM Key Generation .. 15

3.1.1 Input Parameters ... 15
3.1.2 Command ... 16

3.2 OEM Asset Gen Util ... 16
3.2.1 Input Parameters ... 16
3.2.2 Command ... 17

3.3 HBK Gen Utility ... 17
3.3.1 Input Parameters ... 17
3.3.2 Command ... 17

3.4 OEM Key Request Utility ... 18
3.4.1 Input Parameters ... 18
3.4.2 Command(s) .. 18

3.5 OEM Asset Packaging Utility ... 19
3.5.1 Input Parameters ... 19
3.5.2 Command(s) .. 19

3.6 OEM Provisioning Data Gen Util .. 20
3.6.1 Input Parameters ... 20
3.6.2 Command ... 20

3.7 OEM Provisioning Tool (OPT) .. 21
3.7.1 Combined OPT Binary .. 21

4. Customer Infospace Provisioning (INFO0) ... 22
4.1 INFO0 - MRAM and OTP ... 22
4.2 Info0 Generation ... 23
4.3 Info0 Programming ... 24

Apollo5 Family OEM Provisioning Tools User’s Guide Table of Contents

@ambiq | all rights reserved 5 A-SOCAP5-UGGA03EN v1.0

5. OEM Image Certificate Generation ... 25
5.1 Prerequisite .. 25
5.2 Note on the Tool Output Files ... 26
5.3 OEM Root Certificate Gen ... 26

5.3.1 Input Parameters ... 26
5.3.2 Command ... 26

5.4 OEM Key Certificate Gen ... 26
5.4.1 Input Parameters ... 27
5.4.2 Command ... 27

5.5 OEM Content Certificate Gen .. 27
5.5.1 Input Parameters ... 27
5.5.2 Command ... 28

6. OEM Debug Certificate Generation .. 29
6.1 OEM Debug-Key Certificate Gen .. 30

6.1.1 Input Parameters ... 30
6.1.2 Command ... 30

6.2 OEM Debug Enabler Certificate Gen .. 30
6.2.1 Input Parameters ... 31
6.2.2 Command ... 31

6.3 OEM Debug Developer Certificate Gen ... 31
6.3.1 Input Parameters ... 31
6.3.2 Command ... 32

7. Image Generation for Apollo5 SBL ... 33
7.1 Overview of Image Types ... 33

7.1.1 Firmware ... 33
7.1.2 Firmware OTA ... 34
7.1.3 Wired Download .. 34
7.1.4 Wired OTA .. 35
7.1.5 Summary ... 36

7.2 Image Generation Scripts ... 37
7.2.1 Basic Script Usage .. 37
7.2.2 Example Configuration File .. 38
7.2.3 Universal Security Options ... 39

7.3 Generating Specific Image Types .. 40
7.3.1 Firmware OTA Images .. 40
7.3.2 Wired Download Images .. 41
7.3.3 Info0 Update Images .. 41
7.3.4 OEM Certificate Chain Update .. 41
7.3.5 Key Revocation Images .. 42

Apollo5 Family OEM Provisioning Tools User’s Guide Table of Contents

@ambiq | all rights reserved 6 A-SOCAP5-UGGA03EN v1.0

8. Downloading Images and Initiating Updates 43
8.1 SWD Download Using JLINK .. 43
8.2 Wired Update .. 44
8.3 Over the Air Updates .. 44

9. UART Wired Update ... 46
9.1 Upgrading Multiple Images in One Step .. 47
9.2 Upgrading Large Binary (Using --wired-chunk-size feature) ... 47

10. Wired Download Procedure .. 49
10.1 Using Wired Download for OTA ... 49

11. Appendix A: create_info0.py options .. 51

Apollo5 Family OEM Provisioning Tools User’s Guide

@ambiq | all rights reserved 7 A-SOCAP5-UGGA03EN v1.0

List of Tables

Table 1-1 Terminology .. 10
Table 11-1 create_info0.py Options ... 51

Apollo5 Family OEM Provisioning Tools User’s Guide

@ambiq | all rights reserved 8 A-SOCAP5-UGGA03EN v1.0

List of Figures

Figure 3-1 OEM Plain (Unencrypted) Provisioning Data Blob Generation 14
Figure 3-2 OEM Encrypted Provisioning Data Blob Generation .. 15
Figure 5-1 OEM Certificate Generation ... 25
Figure 6-1 OEM Debug Certificates .. 29
Figure 7-1 Firmware ... 33
Figure 7-2 Firmware OTA ... 34
Figure 7-3 Wired Download .. 35
Figure 7-4 Wired OTA .. 36
Figure 7-5 Wired OTA - Step 2 .. 36
Figure 7-6 Relationship Summary ... 37

9 A-SOCAP5-UGGA03EN v1.0

SECTION

1 Introduction

This document provides an overview of the OEM provisioning process, initial configuration,
and run time updates for the Apollo5 Family SoC and the details of the tools required to accom-
plish these tasks. References to Apollo5 refers all members of the Apollo5 Family, unless explic-
itly stated otherwise.

1.1 System Requirements

The provisioning tools and associated scripts are cross platform and can run on any
platform that supports:
OpenSSL – 3.0 or higher
Python – 3.8.10 or later

– pyserial 3.5 (required for uart_wired_update.py and
uart_recovery_host.py scripts)

– cryptography 44.0.0 (required for encrypted or signed image formats)

The following python libraries are needed only when running the remote signing
server example:

Flask - (verify that urllib3 is >2.0, required by Open SSL)

1.2 Terminology
This section defines some of the terminologies used in this document.

NOTE: Unless specifically noted, all the tools mentioned below are included in the
AmbiqSuite SDK release under directory /tools/apollo510_scripts. As other Apol-
lo5xx devices are released they will have their own dedicated /tools/apollo5xx-
_scripts directory.

Apollo5 Family OEM Provisioning Tools User’s Guide Introduction

@ambiq | all rights reserved 10 A-SOCAP5-UGGA03EN v1.0

Table 1-1: Terminology

Abbreviation Definition

ICV Integrated Circuit Vendor
DM LCS Device Manufacturer Life Cycle State

OEM Original Equipment Manufacturer
RoT Root of Trust
RMA Returned Merchandise Authorization

11 A-SOCAP5-UGGA03EN v1.0

SECTION

2 Keys

The Apollo5 Security infrastructure relies on asymmetric and symmetric keys for a variety of
purposes, ranging from creating a Root of Trust, to using asymmetric keys for authentication,
and symmetric keys for various encryption needs.

Signing Keys

The Apollo5 uses Asymmetric PKA for establishing authenticity of loaded images as well as
update images.

A Secureboot enabled part requires a certificate chain for successful boot. The chain itself
contains three certificates, each with a Public Key, with the root certificate binding to the
INFOC-OTP Root of Trust. Images/certificates are signed using the corresponding Private
Keys. Key assets are maintained as Password encrypted .pem files.

Encryption Keys

The Apollo5 uses Symmetric AES-CTR encryption for code confidentiality. Symmetric key
based AES-CMAC can also be used to add authentication and encryption to provisioning
information during manufacturing as well.

NOTE: The pathnames for scripts and config files in this chapter are listed as if the
working directory is currently set to the SDK directory /tools/apollo510_scripts.

NOTE: In cases where the OEM lacks direct access to private keys (e.g., when using
a signing server), the AmbiqSuite SDK provides a plugin interface that allows the
OEM to provide a plugin specific to their development environment that enables
communication with a remote signing server for certificate signing.

Apollo5 Family OEM Provisioning Tools User’s Guide Keys

@ambiq | all rights reserved 12 A-SOCAP5-UGGA03EN v1.0

OEMs can program their desired AES keys into INFOC-OTP during the OEM provisioning
process. Specifically, OEMs program the Apollo5 two hardware keys Kcp, a Kce, and a bank
of additional AES keys (known as the keybank) in the INFOC-OTP.

Key Generation

While the OEM may have their own process to generate the key assets (e.g., HSM), Ambiq-
Suite SDK provides simple utilities that can be used to generate them as well.

2.1 Key Gen Utility

The Key Gen Utility is used to generate all the keys required for OEM provisioning
at device manufacturing. The following python utility can be used to generate the
keys.

./oem_tools_pkg/am_oem_key_gen_util/am_oem_key_gen_util.py

2.1.1 Input Parameters

The inputs to the Key Gen Utility are provided through a configuration file speci-
fied as a command-line parameter. The inputs configured in the configuration file
are described in the example config file itself at the following location:

./oem_tools_pkg/am_oem_key_gen_util/oemKeyGenConfig.cfg

2.1.2 Key Gen Command

The following command runs the Key Gen script:

./oem_tools_pkg/am_oem_key_gen_util/$
python am_oem_key_gen_util.py ./oemKeyGenConfig.cfg

Upon successful execution, the Key Gen Utility creates two folders containing all
the required symmetric and asymmetric keys for INFOC-OTP provisioning. It also
generates the asymmetric keys for the OEM certificate chain and debug/RMA cer-
tificates.

./oem_tools_pkg/am_oem_key_gen_util/oemAesKeys

./oem_tools_pkg/am_oem_key_gen_util/oemRsaKeys

The keybank keys are generated separately.

Apollo5 Family OEM Provisioning Tools User’s Guide Keys

@ambiq | all rights reserved 13 A-SOCAP5-UGGA03EN v1.0

2.2 Signing Server Plugin Support

Ambiq provides tools for generating certificates with customizable signing via
plugins, including examples for local and remote signing (with HSM example).
Plugins follow a standardized interface for signing operations, allowing users to
implement security features tailored to their needs while remaining compatible
with future Ambiqsuite SDK updates.

Key Features:

1. Plugin Framework:

a. Located in cert_gen_utils/plugin/signature_interface.py.

b. Default plugin (LocalInterface) supports local signing; configurable for
remote signing (e.g., via HTTPInterface).

c. Plugins must implement sign(keyIdx: str, data: bytes) and can include cus-
tom configuration files.

2. Configuration Files:

a. Includes essential fields like auth-key, signature-plugin-path, and signature-
plugin-cfg.

b. Example entries provided for quick integration.

3. Simulated HSM Example:

a. Provided in cert_gen_utils/plugin_reference/sign_server.py.

b. Enables remote signing via Flask-based server.

c. Configurable through the am_remote_keys_plugin.cfg file.

d. Supports signing and verification operations using RSA encryption.

This framework streamlines secure certificate generation and simplifies plugin cus-
tomization for advanced use cases. For more information regarding plugin imple-
mentation, please review the README found in:

./oem_tools_pkg/cert_utils/cert_gen_utils/plugin_references/README.txt

14 A-SOCAP5-UGGA03EN v1.0

SECTION

3 OEM Provisioning

OEM provisioning is the process of creating digital security assets in a form that is suitable for
the customer’s production flow. The Apollo5 provides two different flows for generating the
OEM’s Security Assets that are needed to move the device from DM-LCS to Secure-LCS. The first
creates a plain (unencrypted) data blob, and the alternate encrypts the OEM assets using the
ICV Key Request/Response from Ambiq that allows the encryption of the Security assets so that
the OEMs keys and ROT cannot be compromised. This may be needed if the provisioning tools
are being handled by untrusted individuals, for example when the products are being manu-
factured and provisioned by a third party in a factory where the provisioning assets may be
handled by non-trusted individuals.

Figure 3-1 shows the general flow for the plain (unencrypted) OEM security asset generation
for the Apollo5 Family.

Figure 3-1: OEM Plain (Unencrypted) Provisioning Data Blob Generation

Apollo5 Family OEM Provisioning Tools User’s Guide OEM Provisioning

@ambiq | all rights reserved 15 A-SOCAP5-UGGA03EN v1.0

Figure 3-2 shows the flow for the generation of the Encrypted OEM security asset generation.

Figure 3-2: OEM Encrypted Provisioning Data Blob Generation

Ambiq provides the tools for each of these steps in the /tools/Apollo510_scripts/
oem_tools_pkg directory. The following sections in this chapter will assume this as the base
directory for pathnames for the utilities described.

3.1 OEM Key Generation

The Key Gen Utility is used to generate the asymmetric keys required for OEM pro-
visioning at the device manufacturing.

The following python utility is used to generate the keys:

./oem_tools_pkg/am_oem_key_gen_util/am_oem_keys_gen_util.py

3.1.1 Input Parameters

The inputs to the Key Gen Utility are provided in a configuration file passed as a
command-line parameter. The inputs specified in the configuration file are
described in the example config file located at:

./oem_tools_pkg/am_oem_key_gen_util/oemKeyGenConfig.cfg

Apollo5 Family OEM Provisioning Tools User’s Guide OEM Provisioning

@ambiq | all rights reserved 16 A-SOCAP5-UGGA03EN v1.0

3.1.2 Command

The following command runs the Key Gen script:

python am_oem_keys_gen_util.py ./oemKeyGenConfig.cfg

After a successful execution, the Key Gen Utility creates the following two folders
containing all the required symmetric and asymmetric keys for INFOC-OTP provi-
sioning. It also generates the asymmetric keys for OEM certificate chain and
debug/RMA certificates.

./oem_tools_pkg/am_oem_key_gen_util/oemAesKeys

./oem_tools_pkg/am_oem_key_gen_util/oemRsaKeys

The keybank keys are generated separately by the OEM and input during the OEM
asset generation in the next section.

3.2 OEM Asset Gen Util

The OEM Asset Gen Utility generates an OEM Security binary file used to initialize
OEM INFOC-OTP security settings. These settings are specified in the file named
oem_asset_gen.cfg which is an input to the oem_asset_gen_util.py script.

The tool creates a binary data file that is an input to the OEM Provisioning Data Gen
Utility discussed in the Section 3.6 OEM Provisioning Data Gen Util on page 20.

3.2.1 Input Parameters

The OEM’s INFOC-OTP security setting can be modified in the configuration file:

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/am_config/
oem_asset_gen.cfg

The SDK contains example files for creating either “secure” (Authentication and
encryption required on any update files) and “non-secure” (Authentication and
encryption not required) OEM Security binary file. These .cfg files are contained in
the same /am_config directory.

oem_asset_gen_nonsec.cfg - config that does not require update files to be
encrypted or authenticated. (non-secure)

oem_asset_gen_sec.cfg - config that requires update files to be both
encrypted or authenticated. (secure)

Apollo5 Family OEM Provisioning Tools User’s Guide OEM Provisioning

@ambiq | all rights reserved 17 A-SOCAP5-UGGA03EN v1.0

3.2.2 Command

The following command is used to run the oem_asset_gen_util.py to generate
the encrypted OEM assets blob:

Run from: ./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/

python oem_asset_gen_util.py ./am_config/oem_asset_gen.cfg

The output of the tool generates the file oem_asset_test_data.bin in the same
directory it was run from.

3.3 HBK Gen Utility

The HBK Gen Utility generates the hash of the Root-of-Trust’s public key for the
OEM that is programmed as HBK1 in INFOC-OTP.

./oem_tools_pkg/cert_utils/am_hbk_gen/am_hbk_gen_util.py

3.3.1 Input Parameters

The parameters to the HBK Gen Util are command-line parameters as shown
below.

python am_hbk_gen_util.py -key <path to the OEM Root Public key> -
endian <B | L> -hash_format <SHA256 | SHA256_TRUNC >

3.3.2 Command

The command below will generate the truncated hash of the OEM’s Root Certifi-
cate Public key.

Run from: ./oem_tools_pkg/cert_utils/am_hbk_gen

python am_hbk_gen_util.py -key ../../am_oem_key_gen_util/
oemRSAKeys/ oemRootCertPublicKey.pem -endian L -hash_format
SHA256_TRUNC

The output files will be generated at the following output folder:

./oem_tools_pkg/cert_utils/am_hbk_gen/hbk_gen_util_outPut

Apollo5 Family OEM Provisioning Tools User’s Guide OEM Provisioning

@ambiq | all rights reserved 18 A-SOCAP5-UGGA03EN v1.0

3.4 OEM Key Request Utility

The OEM Key Request Utility is used to generate the derived Krtl-key-request-cer-
tificate to be processed at Ambiq's secure lab. The output of this utility is sent to
Ambiq which contains the key request public key. This is used by Ambiq's response
utility to encrypt the derived Krtl key which is then used for encrypting the OEM
assets. The script to generate the Key request is:

./oem_tools_pkg/oem_asset_prov_utils/oem_key_request/
am_oem_key_request_util.py

3.4.1 Input Parameters

The inputs to the OEM Key Request Utility are provided through the configuration
file as a command line parameter. The details of the config file parameters are
described in the example config file itself.

./oem_tools_pkg/oem_asset_prov_utils/oem_key_request/am_config/
am_dmpu_oem_key_request.cfg

3.4.2 Command(s)

The following command will generate the key request binary data:

Run from: ./oem_tools_pkg/oem_asset_prov_utils/oem_key_request

python am_oem_key_request_util.py ./am_config/ am_dmpu_oem_key_request.cfg

The output file containing the key request data is generated as follows:

./oem_tools_pkg/oem_asset_prov_utils/oem_key_request/oem_request_pkg.bin

The file is sent to Ambiq that will process it and will return the file
icv_response_pkg.bin.

NOTE: This step is only needed when generating an encrypted OEM security data
image. For plain (unencrypted) data this step can be skipped.

Apollo5 Family OEM Provisioning Tools User’s Guide OEM Provisioning

@ambiq | all rights reserved 19 A-SOCAP5-UGGA03EN v1.0

3.5 OEM Asset Packaging Utility

The OEM Asset Packaging Utility am_dmpu_oem_asset_pkg_util.py script is
used to encrypt the OEM assets before sending it to the device manufacturing to
provision the encrypted assets securely. It can be found in the directory:

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package

This utility encrypts three plain text assets separately (Kcp, Kce, and the OEM Secu-
rity binary file, generated earlier) and generates three encrypted assets blobs. The
plain text OEM security binary file and icv_response_pkg.bin received from
Ambiq are placed at the following location as described in the example config file:

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/inputData/

3.5.1 Input Parameters

In directory: ./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/
am_config

Files: oem_asset_enc.cfg
 am_asset_oem_ce.cfg
 am_asset_oem_cp.cfg

3.5.2 Command(s)

The following command(s) are used to generate the encrypted OEM assets:

Run from: ./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package

python am_dmpu_oem_asset_pkg_util.py ./am_config/oem_asset_enc.cfg
python am_dmpu_oem_asset_pkg_util.py ./am_config/am_asset_oem_ce.cfg
python am_dmpu_oem_asset_pkg_util.py ./am_config/am_asset_oem_cp.cfg

The output files containing the encrypted assets are will be place in the same
directory as follows:

 oem_asset_pkg.bin
 oem_prov_asset_kce_pkg.bin
 oem_prov_asset_kcp_pkg.bin

NOTE: This step is only needed when generating an encrypted OEM security data
image. For plain (unencrypted) data this step can be skipped.

Apollo5 Family OEM Provisioning Tools User’s Guide OEM Provisioning

@ambiq | all rights reserved 20 A-SOCAP5-UGGA03EN v1.0

3.6 OEM Provisioning Data Gen Util

The OEM Provisioning Data Gen Utility generates the final OEM provisioning data
blob which is unpackaged by the OPT tool on the device before provisioning the
data. The data image may be optionally encrypted using the previous steps dis-
cussed above (the ICV Key Request/Response and the OEM Asset Packaging).

The tool mainly joins the three OEM assets generated by OEM Key Generation, and
the OEM Asset Generation, (and then optionally encrypted by the OEM Asset Pack-
aging Utility). It also adds default DCU, initial software version and more to the final
blob which is provided through the config file.

The utility is available at the following path:

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/
am_dmpu_prov_data_gen_util.py

3.6.1 Input Parameters

The following config file is used to configure the generation of the OEM provision-
ing blob:

In directory: ./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/
am_config

File: am_dmpu_data_gen.cfg

3.6.2 Command

The following command is used to generate the encrypted OEM assets blob:

Run from: ./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package

python am_dmpu_prov_data_gen_util.py ./am_config/am_dmpu_data_gen.cfg

The output of the tool generates:

. /dmpu_prov_data_blob.bin

The SDK provides several example config files for generating various types of data
blobs that can be substituted for am_dmpu_data_gen.cfg.

am_dmpu_data_gen_plain_nonsec.cfg – This generates a unencrypted OPT
data blob (when steps 3.4 and 3.5 were skipped), and secureboot is disabled
(the image at MAINPOINTER will be run without being authenticated).

am_dmpu_data_gen_nonsec.cfg – This generates an encrypted OPT data
blob (when the ICV Key request/response was used). This config also has secure
boot disabled, when the device transitions to secure.

Apollo5 Family OEM Provisioning Tools User’s Guide OEM Provisioning

@ambiq | all rights reserved 21 A-SOCAP5-UGGA03EN v1.0

am_dmpu_data_gen_sec.cfg – This generates an encrypted OPT data blob
with Secureboot enabled. With secureboot is enabled, the user application will
run only when authenticated with oem_cert_chain.

3.7 OEM Provisioning Tool (OPT)

The OPT is an Ambiq signed tool which is downloaded and executed on the chip in
the OEM’s manufacturing facility processing the OEM provisioning data and writ-
ing the INFOC-OPT fields with the selected data and options.

The OPT tool is available at the following location:

./oem_tools_pkg/oem_prov_tool/opt_image_pkg.bin

The tool is downloaded into SRAM at address 0x20030000, and the OEM assets
(encrypted or plain), generated in the previous section, are loaded into SRAM at
address 0x20037000. After downloading these 2 blobs, the device is then reset.
During the subsequent reboot, the OEM assets get provisioned if both the blobs
are authenticated successfully. After a successful OEM provisioning, the device will
reset, and the Apollo5 will have been transitioned to secure LCS.

3.7.1 Combined OPT Binary

Optionally, both the OPT blobs (opt_image_pkg.bin and
dmpu_prov_data_blob.bin) can be combined into one OPT blob that can be
downloaded to 0x20030000.

The following command is used to generate the combined OPT blob:

Run from ./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/

python am_opt_combined_gen_util.py ./am_config/ am_opt_combined_gen.cfg

The output of the tool generates as follows:

./oem_tools_pkg/oem_asset_prov_utils/oem_asset_package/
opt_image_combined.bin

NOTE: If the provisioning fails for some reason, the device will remain in DM LCS.

22 A-SOCAP5-UGGA03EN v1.0

SECTION

4 Customer Infospace
Provisioning (INFO0)

Customer infospace, also known as INFO0, controls a variety of customer-specific features of
the MCU. The following sections provide information on how to provision INFO0 for a particu-
lar application.

The scripts for the following examples are also located in /tools/apoll05b_scripts directory in
the AmbiqSuite SDK.

4.1 INFO0 - MRAM and OTP

The Apollo5 device has two “INFO0” spaces, one that is based on MRAM
(rewritable) and one that is OTP (one time programmable). Only one of which is
active at any one time, providing INFO0 configuration data to the device. Either
can be written at any time. Which one is active is determined by the selector
register INFOC_SHDW_TRIM_INFO0_SEL at (0x400C23FC). See the register
documentation for this register and its use.

INFO0-OTP is 256 bytes in size and INFO0-MRAM is 2048 bytes (2K) in size. The first
~160bytes have a defined use (that is the same for both Info0-MRAM and Info0-
OPT), with the remaining space in each available to the customer for their use.

The create_info0.py script described below always outputs 256b .bin file which
can be used to program either the full INFO0-OTP or the first 256 bytes of INFO0-
MRAM. The customer would modify the script for their specific use if locations
beyond the first 256 bytes are to be used.

Apollo5 Family OEM Provisioning Tools User’s Guide Customer Infospace Provisioning (INFO0)

@ambiq | all rights reserved 23 A-SOCAP5-UGGA03EN v1.0

4.2 Info0 Generation

The script create_info0.py is used to create a binary file that is then used to program/update
INFO0 (either MRAM or OTP). The user specifies INFO0 parameters either via command-line
options, or in a config file, or a combination of the two, with command-line arguments taking
precedence. A full list of options can be found in Appendix A. A reduced list of options (minus
the MRAM recovery specific options) can be accessed by using the --help flag, the full list can
be displayed with the -hx (help extended) flag:

python create_info0.py --help

While the arguments are listed as optional from the script’s execution perspective, various
options are required depending on the desired use of the Apollo5 device.

$ python3 create_info0.py --help
usage: create_info0.py [-h][-hx] [--info0Cfg] [--valid {0,1,2}]
 [--version VERSION] [--main MAINPTR]
 [--cchain CERTCHAINPTR][--wTO WIREDTIMEOUT]
 [--u0 U0] [--u1 U1] [--u2 U2] [--u3 U3] [--u4 U4]
 [--u5 U5] [--sdcert SDCERT] [--rma RMAOVERRIDE]
 [--sresv SRESV] [--loglevel {0,1,2,3,4,5}] output

Generate Apollo5 Info0 Blob
positional arguments:
 output Output filename (without the extension)
optional arguments:
 -h, --help show this help message and exit
 --hx show extended help message and exit
 --info0Cfg Relative path to INFO0 configuration file.
 --valid {0,1,2} INFO0 Valid 0 = Uninitialized, 1 = Valid, 2 = Invalid
 (Default = 1)?
 --version VERSION version (Default = 0)
 --main MAINPTR Main Firmware location (Default = 0x410000)
 --cchain CERTCHAINPTR Certificate Chain location (Default = 0x00000000)
 --wTO WIREDTIMEOUT Wired interface timeout in millisec (default = 2000)
 --u0 U0 UART Config 0 (default = 0x00000000)
 --u1 U1 UART Config 1 (default = 0x00000000)
 --u2 U2 UART Config 2 (default = 0x00000000)
 --u3 U3 UART Config 3 (default = 0x00000000)
 --u4 U4 UART Config 4 (default = 0x00000000)
 --u5 U5 UART Config 5 (default = 0x00000000)
 --sdcert SDCERT Secure Debug Cert Address (default = 0x7ff400)
 --rma RMAOVERRIDE RMA Override Config 2 = Enabled, 5 = Disabled
 (default = 0x2)
--sresv SRESV SRAM Reservation (Default 0x0)
--loglevel {0,1,2,3,4,5}
 Set Log Level (0: None), (1: Error), (2: INFO),
 (4: Verbose), (5: Debug) [Default = Info]

Example Usage:

To create INFO0 image with Wired UART set on pins 53 (Tx) and 55 (Rx) with baud 115200
(0x1C200), and the timeout of 5 Sec. running the Main image (if nonsecure boot) at 0x410000,

Apollo5 Family OEM Provisioning Tools User’s Guide Customer Infospace Provisioning (INFO0)

@ambiq | all rights reserved 24 A-SOCAP5-UGGA03EN v1.0

and the SD Cert location set to 0x7ff400. If configured for secureboot, the OEM cert chain is
located at 0x4C0000.

python ./create_info0.py --valid 1 --u0 0x1C200c0 --u1 0x00003537 --u2 0x4
--u3 0x4 --u4 0x0 --u5 0x0 --main 0x410000 --version 1 --wTO 5000 --sdcert
0x7FF400 --cchain 0x4c0000 info0

This will generate a info0.bin, which can then be used to program to INFO0 in the Apollo5
device (either INFO0-MRAM or INFO0-OTP).

4.3 Info0 Programming

The generated info0.bin can be programmed directly using the a debugger (using
the supplied Jlink script), programmatically using HAL functions, or via the Wired
Update process supported by the SBL.

AmbiqSuite SDK provides two sample scripts, jlink-prog-info0.txt and jlink-
prog-info0-otp.txt for the direct programming of Info0 (MRAM and OTP
respectively) using a Jlink debugger.

This script can be processed by the JLINK command line utility with an invocation
following the following format (for Windows):

JLink.exe -CommanderScript jlink-prog-info0.txt (for Info0-MRAM)

or

JLink.exe -CommanderScript jlink-prog-info0-otp.txt (for Info0-OTP)

Alternatively, INFO0 can be programmed using the SBL assisted update flow, by
generating an Info0 update image (see Section 7.3.3 Info0 Update Images on page
41) and then using one of the supported methods to download the update image
and initiate an update (see Section 8 Downloading Images and Initiating Updates on
page 43).

25 A-SOCAP5-UGGA03EN v1.0

SECTION

5 OEM Image Certificate
Generation

Provisioning of the Apollo5 Family in the DM LCS to support Secureboot depends upon a
“chain” of public key certificates as shown in Figure 5-1. This method provides flexibility and
additional security in case the content changes or a certificate in the chain is compromised.

Figure 5-1: OEM Certificate Generation

5.1 Prerequisite

The OEM certificate chain generation process assumes that OEM RSA keys have
already been generated using the KeyGen Utility during the provisioning data gen-
eration process. The OEM Certificate chain should use these same OEM RSA keys.

While processing the Certificate Chain authentication on the device, it is also
assumed that the device is already provisioned with the Root of Trust (HBK1 in the
INFOC-OTP), as the OEM Root Certificate is authenticated using the RoT. When in
DM LCS, before the ROT is programmed, the OEM Root Certificate authentication is
bypassed, and accepted as valid, but the remaining certs continue to be validated.

Apollo5 Family OEM Provisioning Tools User’s Guide OEM Image Certificate Generation

@ambiq | all rights reserved 26 A-SOCAP5-UGGA03EN v1.0

5.2 Note on the Tool Output Files

Many of the steps below will generate both *.txt files that are appropriate to cut
and paste into source code files for testing. However, the tools also generate *.bin
files that provide the assets for later steps to produce a provisioning blob.

5.3 OEM Root Certificate Gen

The OEM Root Certificate is used to validate the Public key provided by the OEM. It
also authenticates the Public key embedded in the OEM key certificate, which is
next in the chain.

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util.py

5.3.1 Input Parameters

The inputs to the OEM Root Certificate Gen is provided through the configuration
file as a command-line parameter. The details of the configuration file parameters
are described in the following file with example configuration values.

./oem_tools_pkg/cert_utils/cert_gen_utils/am_config/
am_oem_root_cert_hbk1.cfg

5.3.2 Command

The following command generates the OEM Root Certificate:

./oem_tools_pkg/cert_utils/cert_gen_utils/$

python am_cert_key_util.py ./am_config/am_oem_root_cert_hbk1.cfg

The output files containing the OEM Root Certificate are generated in binary and
text formats:

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util_output/
oem_root_cert_hbk1.bin

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util_output/
oem_root_cert_hbk1_Cert.txt

5.4 OEM Key Certificate Gen

The OEM Key Certificate Utility generates the OEM Key Certificate to validate the
Public key in the Content Certificate which is next in the OEM Certificate Chain:

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util.py

Apollo5 Family OEM Provisioning Tools User’s Guide OEM Image Certificate Generation

@ambiq | all rights reserved 27 A-SOCAP5-UGGA03EN v1.0

5.4.1 Input Parameters

The input to the OEM Key Certificate Gen is provided through the configuration file
as a command-line parameter. The details of the configuration file parameters are
described in the following file with example configuration values.

./oem_tools_pkg/cert_utils/cert_gen_utils/am_config/
am_oem_key_cert.cfg

5.4.2 Command

The following command generates the OEM Key Certificate:

./oem_tools_pkg/cert_utils/cert_gen_utils/$
python am_cert_key_util.py ./am_config/am_oem_key_cert.cfg

The output file containing the OEM Key Certificate is generated in binary and text
formats:

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util_output/
oem_key_cert.bin

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_key_util_output/
oem_key_cert_Cert.txt

5.5 OEM Content Certificate Gen

The OEM Content Certificate is used to authenticate OEM software image(s) on the
device. It contains a list of software images, along with the start addresses and
their sizes.

./oem_tools_pkg/cert_utils/cert_gen_utils/am_cert_content_util.py

5.5.1 Input Parameters

The inputs to the OEM Content Certificate Gen Tool is provided through the config-
uration file as a command-line parameter. The details of the configuration file
parameters are described in the following with example configuration values.

NOTE: Ambiq SBL requires the software image(s) are stored in MRAM un-
encrypted and are executed directly from the stored location itself. Choose the
corresponding configuration as described in the config file and set the
images_table.tbl accordingly, as mentioned below. Check with Ambiq before
using other options.

Apollo5 Family OEM Provisioning Tools User’s Guide OEM Image Certificate Generation

@ambiq | all rights reserved 28 A-SOCAP5-UGGA03EN v1.0

./oem_tools_pkg/cert_utils/cert_gen_utils/am_config/
am_oem_cnt_cert.cfg

The list of software images is listed in a text file that is used by the config file as
mentioned above. The example list file is placed at the following location:

./oem_tools_pkg/cert_utils/cert_gen_utils/inputData/images_table.tbl

The format of the image table are as follows:

ImageName - Path to the image file.

RAMloadAdd - Since the image is executed from the MRAM itself, as config-
ured in config file, this must be set to image start address in MRAM.

flashStoreAdd – Must be set to 0xFFFFFFFF.

Maxsize - Must be set to a value equal to, or greater than the image size.

Enc-Scheme - 0 = plain text, 1 = encrypted.
Note: The encrypted option is not supported and must not be selected.

WriteProtect - When set to 0x1, Ambiq Bootloader will write protect the image
(in 16K increments) as part of secure boot. Set it to 0, if no write protection is
needed.

CopyProtect - When set to 0x1, Ambiq Bootloader will copy protect the image
(in 16K increments) as part of secure boot. Set it to 0, if no copy protection is
needed. Note that, if enabled, the executable image must be built with no liter-
als in the code area (e.g., execute only), as it will otherwise fail because of read
operations within the image.

ExtendedFormat - Not Supported. Must be set to 0.

5.5.2 Command

The following command will be used to generate the content certificate:

./oem_tools_pkg/cert_utils/cert_gen_utils/$

python am_cert_content_util.py ./am_config/am_oem_cnt_cert.cfg

The output files containing the Content Cert assets are generated as follows:

./oem_tools_pkg/cert_utils/cert_gen_utils/
am_cert_content_util_output/content_cert.bin

./oem_tools_pkg/cert_utils/cert_gen_utils/
am_cert_content_util_output/content_cert_Cert.txt

29 A-SOCAP5-UGGA03EN v1.0

SECTION

6 OEM Debug Certificate
Generation

The debug certificate(s) is used to enable the debugging or changing the device to RMA LCS
for device analysis. The Debug certificates can be processed in either DM and Secure LCS.

The debug certificate consists of three certificates: Debug-key certificate, Debug Enabler certif-
icate, and Debug Developer certificate as shown in Figure 6-1. All these certificates need to be
generated in sequence. The debug-key certificate is added to the debug enabler certificate
using the Debug enabler certificate gen config file. Similarly, the debug enabler certificate is
added to the debug developer certificate using the debug developer certificate gen config file.
Finally, the debug developer certificate is downloaded onto the device as a single entity to be
processed by the SBR as three combined certificates.

Figure 6-1: OEM Debug Certificates

Apollo5 Family OEM Provisioning Tools User’s Guide OEM Debug Certificate Generation

@ambiq | all rights reserved 30 A-SOCAP5-UGGA03EN v1.0

6.1 OEM Debug-Key Certificate Gen

The OEM Debug-Key Certificate is used to validate the Public key provided by the
OEM. It also authenticates the Public key embedded in the OEM Enabler Certificate,
which is next in the debug certificate chain.

In directory: ./oem_tools_pkg/cert_utils/cert_gen_utils/

Script: am_cert_key_util.py

6.1.1 Input Parameters

The inputs to the OEM Debug-Key Certificate Gen are provided through the config-
uration file as a command-line parameter. The details of the configuration file
parameters are described in the example configuration file.

In directory: ./oem_tools_pkg/cert_utils/cert_gen_utils/am_config

File: am_oem_dbg_key_cert.cfg

6.1.2 Command

The following command generates the OEM Debug-Key Certificate:

Run in directory: ./oem_tools_pkg/cert_utils/cert_gen_utils/

python amcert_key_util.py ./am_config/am_oem_dbg_key_cert.cfg

The output file containing the ICV Debug-Key Certificate is generated in binary and
text formats as follows:

In directory ./oem_tools_pkg/cert_utils/cert_gen_utils/
am_cert_key_util_output

Files: debug_oem_key_cert.bin
 debug_oem_key_cert_Cert.txt

6.2 OEM Debug Enabler Certificate Gen

The OEM Debug Enabler Certificate utility is used to generate the debug enabler
certificate which contains the OEM DCU debug masks, and lock masks, or RMA
information (in case of RMA certificate for OEM). It also authenticates the Public key
embedded in the OEM debug developer certificate, which is next in the debug cer-
tificate chain.

In directory: ./oem_tools_pkg/cert_utils/cert_gen_utils/

Script: am_cert_dbg_enabler_util.py

Apollo5 Family OEM Provisioning Tools User’s Guide OEM Debug Certificate Generation

@ambiq | all rights reserved 31 A-SOCAP5-UGGA03EN v1.0

6.2.1 Input Parameters

The inputs to the OEM Debug Enabler Certificate Gen is provided through the con-
figuration file as a command-line parameter. The details of the configuration file
parameters are described in the example configuration file.

In directory: ./oem_tools_pkg/cert_utils/cert_gen_utils/am_config

File: am_oem_dbg_enabler_cert.cfg

6.2.2 Command

The following command generates the OEM Debug Enabler Certificate:

Run in directory: ./oem_tools_pkg/cert_utils/cert_gen_utils/

python am_cert_dbg_enabler_util.py ./am_config/
am_oem_dbg_enabler_cert.cfg

The output file containing the OEM Debug Enabler Certificate is generated only in
binary format:

In directory: ./oem_tools_pkg/cert_utils/cert_gen_utils/
am_debug_cert_output

File: oem_dbg_cert_enabler_pkg.bin

6.3 OEM Debug Developer Certificate Gen

The OEM Debug Developer Certificate is used to generate the final debug certifi-
cate which contains OEM debug-key Certificate, OEM Debug Enabler Certificate,
and SOC-ID (Chip specific Identification).

In directory: ./oem_tools_pkg /cert_utils/cert_gen_utils/

Script: am_cert_dbg_developer_util.py

6.3.1 Input Parameters

The inputs to the OEM Debug Developer Certificate Gen is provided through the
configuration file as a command-line parameter. The details of the configuration
file parameters are described in the example configuration file:

In directory: ./oem_tools_pkg /cert_utils/cert_gen_utils/am_config

File: am_oem_dbg_developer_cert.cfg

Apollo5 Family OEM Provisioning Tools User’s Guide OEM Debug Certificate Generation

@ambiq | all rights reserved 32 A-SOCAP5-UGGA03EN v1.0

6.3.2 Command

The following command generates the OEM Developer Certificate:

Run in directory: ./oem_tools_pkg/cert_utils/cert_gen_utils

python am_cert_dbg_developer_util.py ./am_config/
am_oem_dbg_developer_cert.cfg

The output files containing the OEM Debug Developer Certificate are generated in
binary and text (‘c’ Header file) formats as follows:

In directory: ./oem_tools_pkg/cert_utils/cert_gen_utils/am_de-
bug_cert_output

Files: oem_dbg_cert_developer_pkg.bin
 oemDeveloperCert.h

33 A-SOCAP5-UGGA03EN v1.0

SECTION

7 Image Generation for Apollo5
SBL

The Apollo5’s boot ROM and SBL (secure boot loader) are capable of performing a wide variety
of update functions, each of which requires a binary image with a specific format, which in turn
is loaded using a specific protocol. This section provides an overview of the various types of
binaries supported by the SBL, as well as some information about the scripts used to generate
them.

7.1 Overview of Image Types

7.1.1 Firmware

Raw application binaries are the most basic image format for the Apollo5. This is
simply a compiled application in the standard Arm binary format, and can be
loaded directly into MRAM using any SWD programming tool (including the JLINK
device on the Apollo5 evaluation kits). All later firmware images will be derived
from this basic image.

Figure 7-1: Firmware

Apollo5 Family OEM Provisioning Tools User’s Guide Image Generation for Apollo5 SBL

@ambiq | all rights reserved 34 A-SOCAP5-UGGA03EN v1.0

7.1.2 Firmware OTA

Firmware OTA images are created by adding metadata to raw binaries using the
create_cust_image_blob.py script (described in detail later in this document).
OTA images are first loaded into a temporary location in MRAM using SWD pro-
gramming tools (step 1) or through other application specific means for field
upgrade (e.g., Firmware upgrade over BLE), and then the SBL will validate and load
the inner application binary to its final destination (step 2). OTA images provide the
user with the option to encrypt and/or sign application binaries. The most com-
mon use case for an OTA image is for a firmware upgrade. An existing user applica-
tion can receive a binary (optionally encrypted or signed) from an external source,
program that binary to a location, and then instruct the SBL to finish the firmware
upgrade following a reset, potentially replacing the original user application.

Figure 7-2: Firmware OTA

To make this two step process easier during development, AmbiqSuite includes a
set of JLink scripts demonstrating how to load the OTA image to an appropriate
temporary location over SWD and then trigger the SBL to perform the second step
of the upgrade. See the tools/apollo510_scripts directory in AmbiqSuite to find
these scripts. The scripts also serve as a reference for the process an application
would need to follow when performing over-the-air upgrades when using alterna-
tive means to download the OTA image.

The same OTA process is reused for non-firmware upgrades like INFO0, trim
patches, key revocations, etc., as well.

7.1.3 Wired Download

The SBL provides Wired Download functionality, where the raw images are prefor-
matted for the SBL to understand and process them.

Apollo5 Family OEM Provisioning Tools User’s Guide Image Generation for Apollo5 SBL

@ambiq | all rights reserved 35 A-SOCAP5-UGGA03EN v1.0

Similar to OTA images, wired download images are also created by adding meta-
data to raw binaries with the create_cust_image_blob.py script. Wired download
metadata can be used to wrap any image type, and it will change how the image
may be downloaded and stored/processed on the device. The wired download
image format is understood both by the SBL and by the PC-side utility
uart_wired_update.py. Using this utility and a wired download image, a user can
effectively program the Apollo5 MRAM using a UART instead of an SWD connec-
tion. This is helpful in situations where an SWD connection is unavailable, includ-
ing situations where an open SWD port might be a security risk. Depending on
device configuration, the wired download could provide a secure (encrypted and
authenticated) channel for device programming/updates. The wired download is
fully managed by the SBL, so this procedure can be used on an otherwise unpro-
grammed the Apollo5 device. The SBL will read the wired download data directly
over the UART interface, potentially decrypting it or authenticate using an RSA sig-
nature, and program the data to its final location in MRAM. No temporary MRAM is
required for this process.

Figure 7-3: Wired Download

7.1.4 Wired OTA

The OTA and Wired Download formats from the previous sections can be used
simultaneously in a single image. In this case, the user will first process the raw
binary to create an OTA image, and then process the OTA image to create a Wired
OTA image. This format combines the advantages of both formats to create an
image that can be loaded entirely over UART, but which can also be loaded to a
temporary location to avoid corrupting the current known good image until the
update is fully decrypted and authenticated.

Apollo5 Family OEM Provisioning Tools User’s Guide Image Generation for Apollo5 SBL

@ambiq | all rights reserved 36 A-SOCAP5-UGGA03EN v1.0

Figure 7-4: Wired OTA

The update process with a Wired OTA image is similar to the standard OTA process,
but the image download step is performed over UART instead of SWD. In step one,
the UART boot host will send the Wired OTA image to the SBL, which will program
its contents (the OTA image) to a temporary location in MRAM. Afterwards, the
Apollo5 will reboot and perform step 2, where it processes the OTA image and pro-
grams the device firmware to its final location.

Figure 7-5: Wired OTA - Step 2

7.1.5 Summary

The diagram below further summarizes the relationship between raw binaries, OTA
images, Wired Download images, and Wired OTA images. While the examples used
in the previous sections all assumed we were working with an application binary,
there are other image types that can be used in place of the OTA image type shown
here.

Apollo5 Family OEM Provisioning Tools User’s Guide Image Generation for Apollo5 SBL

@ambiq | all rights reserved 37 A-SOCAP5-UGGA03EN v1.0

Figure 7-6: Relationship Summary

The following sections discuss these additional image types and also explains in
detail how the supporting scripts work.

7.2 Image Generation Scripts

The Apollo5’s SBL (secure boot loader) can perform a wide variety of functions,
each requires a binary image with a specific format, which is then loaded into the
device over one of the support interfaces. The create_cust_image_blob.py script
described in this section can generates these image formats, including the follow-
ing:

Secure and non-secure Firmware OTA
Wired Download
Certificate Chain Update
Key Revocation
INFO0 Update
OEM Application Recovery

7.2.1 Basic Script Usage

Most image formats for the Apollo5 are handled by create_cust_image_blob.py.
This script can be controlled either with command line parameters, by config file,
or with a combination of the two, where the command-line arguments always take
precedence.

The full list of options can be found by calling the script using the --help command
line option. The options required will vary depending on the image type being cre-
ated. The following sections describe the supported image types along with the
relevant options for each one.

For more examples of how to use create_cust_image_blob.py, see the tools/
apollo510_scripts/examples directory of AmbiqSuite SDK.

Apollo5 Family OEM Provisioning Tools User’s Guide Image Generation for Apollo5 SBL

@ambiq | all rights reserved 38 A-SOCAP5-UGGA03EN v1.0

7.2.2 Example Configuration File

Below is an example showing the configuration files used for
create_cust_image_blob.py alongside the equivalent command-line commands.

Configuration file “firmware.ini”:

#**
#
Configuration file for create_cust_image_blob.py
#
Run "create_cust_image_blob.py --help" for more information about the
options
below.
#
All numerical values below may be expressed in either decimal or
hexadecimal
"0x" notation.
#
To re-generate this file using all default values, run
"create_cust_image_blob.py --create-config"
#
#**
[Settings]
chip = apollo510
app_file = hello_world.bin
Location where the image should be installed
load_address = 0x410000
enc_algo = 0x0
specify enc_algo as 1 to do AES encryption
auth_algo = 0x0
auth_key relevant only if auth_algo is 1
auth_key indicates which PK is used for signature
auth_key = 0x2
kek_index = 0x80
image_type = firmware
certificate = None
output = hello_world_ota.bin
key_table = keys.ini

This configuration creates hello_world_ota.bin (a non-secure firmware OTA
image) from hello_world.bin (a compiled Apollo5 binary), with no encryption,
authentication, or content certificate. To execute this configuration, one would
execute the following command from the same directory as the file.

$ python ./create_cust_image_blob.py -c firmware.ini

Equivalently, this configuration can also be expressed on the command line as fol-
lows.

$ python3 ./create_cust_image_blob.py --chip apollo510 --bin
hello_world.bin --load-address 0x410000 --enc-algo 0 --kek-index 0x80
--auth_algo 0 --auth-key 0x2 --image-type firmware

Apollo5 Family OEM Provisioning Tools User’s Guide Image Generation for Apollo5 SBL

@ambiq | all rights reserved 39 A-SOCAP5-UGGA03EN v1.0

7.2.3 Universal Security Options

The Apollo5 SBL supports AES encryption and RSA authentication for a wide vari-
ety of update types. Correspondingly, the create_cust_image_blob.py script
includes features to encrypt and/or sign binaries in the correct format to be
decrypted and validated by the SBL. Each of the security options below can be
applied to any image type. Additional options for specific image types will be cov-
ered in later sections.

auth_algo: The authentication method to use. (0 = none, 1 = RSA (RSA PSS
2072 after Hash SHA 256))

auth_key: The key index of the authentication key. The index represents the
actual asymmetric key used for signing. It corresponds to public key contained
in one of the preinstalled certificates on the device (0 = root cert, 1 = key cert, 2
= content cert).

enc_algo: The encryption algorithm to use for securing the transfer (0 = none,
1 = AES-128 CTR mode)

kek_index: The index for the key encryption key to be used. The index rep-
resents the key encryption key used to decrypt the encrypted key bundled in
the image. Index 0 and 1 represent hardware keys (Kcp or Kce respectively) pro-
grammed during provisioning. Key indices 0x80 onwards represent INFOC-OTP
key-bank keys, with each index representing a 128b AES key.

key_table: Path to a configuration file describing the encryption keys used with
the Apollo5.
Note: This can be set to None if no encryption or authentication is needed.

The key_table file contains pointers to various Private Key assets used to sign the
image blobs, as well as the symmetric keys used for encryption.

The asymmetric key material should correspond to the certificates provisioned on
the chips, and are referenced using password encrypted .pem files.

The symmetric key material should match with the INFOC-OTP keys programmed
in the chips, and are referenced using pointers to binary key and key bank files.
Typically, these keys will be used as Key Encryption Keys (KEK) for an OTA image.

To use a particular key, you will need to supply the keys.ini file as shown below, as
well as a KEK index for encryption and Auth Keys index for signing.

Key file
[Root Key]
index = 0x0
format = pem
filename = oem_tools_pkg/am_oem_key_gen_util/oemRSAKeys/
oemRootCertKeyPair.pem
passfile = oem_tools_pkg/am_oem_key_gen_util/oemRSAKeys/
pwdOemRootCertKey_Rsa.txt

Apollo5 Family OEM Provisioning Tools User’s Guide Image Generation for Apollo5 SBL

@ambiq | all rights reserved 40 A-SOCAP5-UGGA03EN v1.0

[Key Cert Key]
index = 0x1
format = pem

filename = oem_tools_pkg/am_oem_key_gen_util/oemRSAKeys/
oemKeyCertKeyPair.pem
passfile = oem_tools_pkg/am_oem_key_gen_util/oemRSAKeys/
pwdOemKeyCertKey_Rsa.txt

[Content Cert Key]
index = 0x2
format = pem
filename = oem_tools_pkg/am_oem_key_gen_util/oemRSAKeys/
oemContentCertKeyPair.pem
passfile = oem_tools_pkg/am_oem_key_gen_util/oemRSAKeys/
pwdOemContentCertKey_Rsa.txt

[Symmetric Keys]
kcp = ../../oem_tools_pkg/am_oem_key_gen_util/oemAESKeys/kcp.bin
kce = ../../oem_tools_pkg/am_oem_key_gen_util/oemAESKeys/kce.bin
kb0 = oem_tools_pkg/oem_asset_prov_utils/inputData/keyBank0.bin
kb1 = oem_tools_pkg/oem_asset_prov_utils/inputData/keyBank1.bin
kb2 = oem_tools_pkg/oem_asset_prov_utils/inputData/keyBank2.bin
kb3 = oem_tools_pkg/oem_asset_prov_utils/inputData/keyBank3.bin

7.3 Generating Specific Image Types

7.3.1 Firmware OTA Images

Firmware OTA images contain firmware and metadata to be used by the boot-
loader to update the firmware on the device. Firmware images can also be created
with built-in encryption and authentication using the “secure-firmware” image
type. The following options are relevant for both firmware and secure-firmware
images:

app_file: File to be used as the application binary

certificate: For secure images, the binary file corresponding to the content cer-
tificate to be installed alongside the application binary.

image_type: set to “firmware” for non-secure images, or “secure-firmware” for
secure images.

load_address: Address where the application should be written in the MRAM.

Apollo5 Family OEM Provisioning Tools User’s Guide Image Generation for Apollo5 SBL

@ambiq | all rights reserved 41 A-SOCAP5-UGGA03EN v1.0

7.3.2 Wired Download Images

Wired download images can contain any data blob and instructions for program-
ming to a specific location. The bootloader will read the image and program the
blob to the specified location. Wired images can be created with or without built-in
encryption using the “wired” image type. Once the wired image is created, the
uart_wired_update.py script can be used to execute the wired download instruc-
tions and load the blob into the Apollo5 memory. Wired download images support
the following options:

app_file: Binary file to write to internal memory

image_type: set to “wired”

load_address: Address where the binary data should be written in the MRAM.

ota: Set this bit to alert the SBL that this wired download contains a firmware
OTA.

wired_chunk_size: Largest number of bytes the Apollo5 should download in a
single pass. See wired OTA description in Section 9.1 Upgrading Multiple Images
in One Step on page 47.

7.3.3 Info0 Update Images

This image type can be used to update the INFO0 data area in the Apollo5 device.
INFO0 is used to contain non-volatile Apollo5 device settings. For more informa-
tion, see the create_info0.py script documentation in Section 4.2 Info0 Generation
on page 23. INFO0 could be updated as a whole, or partially.

app_file: Binary file to write to info0 space

image_type: set to “info0”

offset: The word offset within info0 where this update binary should be written.

load_address: Address where the binary data should be written in the MRAM.

ota: Set this bit to alert the SBL that this wired download contains a firmware
OTA.

prog_dest: The destination to be programmed INFO0-OTP, MRAM, Both or the
currently active one.

7.3.4 OEM Certificate Chain Update

OEM Chain Update images are used to make updates to the certificate chain used
by the Apollo5 SBL. The root certificate, key certificate, and content certificate all
get changed using this process. This option is primarily used to increment the cer-
tificate version to ensure images cannot be rolled back to older certificates.

Apollo5 Family OEM Provisioning Tools User’s Guide Image Generation for Apollo5 SBL

@ambiq | all rights reserved 42 A-SOCAP5-UGGA03EN v1.0

image_type: set to “oem_chain”

certificate: Filename for the content certificate to be installed.

root_cert: Filename for the root certificate to be installed.

key_cert: Filename for the key certificate to be installed.

7.3.5 Key Revocation Images

The Apollo5 “keybank” keys (as discussed in Section 1 Keys on page 11) are pro-
grammed into INFOC-OTP and can be used for encryption both in the boot process
and in the main application. The purpose of the “key revocation” image type is to
provide a way to revoke access to specific keybank keys in case they have been
compromised.

In addition to the universal options, the key revocation image type supports only
the following option:

app_bin: Filename for the key update binary to be used for key revocation.

The “key update binary” itself is a 64-bit bitmask (little endian), where each bit cor-
responds to a single 128-bit AES key in the keybank. Setting a bit revokes the key
with the same number (for example, setting bit 0 revokes keybank AES key 0).

43 A-SOCAP5-UGGA03EN v1.0

SECTION

8 Downloading Images and
Initiating Updates

As described in the previous chapter, the Apollo5 SBL is capable of receiving and validating
firmware updates through multiple methods. This chapter focuses on the available methods
for transferring data from a boot host (often a PC) to the Apollo5 SBL. The currently supported
data transfer methods are as follows:

SWD Debugger (such as JLink)
Wired Update
Over the Air (with the help of a user application)

AmbiqSuite contains examples for each of these transfer methods, and any of them may be
used to deliver firmware updates in customer applications. The following sections describe the
available examples in further detail.

8.1 SWD Download Using JLINK

The most straightforward firmware download method is over SWD with a hard-
ware debugger (like JLINK). Using the debugger, a user may write directly to main
MRAM. Depending on the type of image being downloaded, the SBL will then per-
form the image validation and OTA processing immediately following the next
reset operation.

AmbiqSuite includes JLINK scripts that demonstrate how the JLINK can be used to
program a specific memory location in the Apollo5, and initiate an update through
SBL.

These scripts include:

General Update

jlink-ota.txt: An example of a debugger-driven OTA download. This can be
used with any update image except for SBL update.

Apollo5 Family OEM Provisioning Tools User’s Guide Downloading Images and Initiating Updates

@ambiq | all rights reserved 44 A-SOCAP5-UGGA03EN v1.0

This script can be run by the JLINK command line utility the following com-
mand (for Windows):

JLink.exe -CommanderScript jlink-ota.txt

SBL Update

Jlink-ota-bootrom.txt: Installs a replacement Secure Bootloader (SBL) done
through the bootrom in the Apollo5 device, similar to the regular OTA, but uses
the jlink script jlink-ota-bootrom.txt to perform a SBL-OTA update.

This script can be run by the JLINK command line utility the following com-
mand (for Windows):

JLink.exe -CommanderScript jlink-ota-bootrom.txt

In both cases the Jlink script should be edited to supply the pathname of the
file to be loaded and processed.

8.2 Wired Update

Wired updates are a way to send data to the SBL without using a debugger connec-
tion. The SBL contains a UART or SPI based boot client that can receive firmware
updates from a host application. The UART boot host program is called
uart_wired_update.py, and is discussed further in the next chapter.

8.3 Over the Air Updates

The SBL can also be used to support over the air updates enabled by user firmware.
In this case, the user firmware will communicate with a boot host and download an
OTA image (described in the image formats section earlier). Once the download is
completed, the user application can program the update blob information by pro-
gramming the OTA infrastructure (see Apollo5 Family Secure Update User’s Guide),
and initiate a device reset. The SBL takes over on the next reboot and validates the
downloaded image, and performs a firmware upgrade

The AmbiqSuite SDK provides an example of an OTA firmware update over BLE
through the “AMOTA” app for the Apollo5. This example implements a specific
transfer protocol with a counterpart host implemented as a Phone App
(Ambiq_BLE App).

The ota_binary_converter.py script in /tools/Apollo5_amota/scripts can be
used to generate an OTA blob compatible with AMOTA. Most of the optional
parameters are not relevant for the Apollo5.

Example usage:

python ota_binary_converter.py --appbin main_ota.bin -o main_
ota_amota

Apollo5 Family OEM Provisioning Tools User’s Guide Downloading Images and Initiating Updates

@ambiq | all rights reserved 45 A-SOCAP5-UGGA03EN v1.0

Thereafter, the normal procedure to upgrade the image using AMOTA and
Ambiq_BLE App on the phone can be used to upgrade the firmware on the device.

46 A-SOCAP5-UGGA03EN v1.0

SECTION

9 UART Wired Update

For UART based wired update to work, the device needs to be provisioned to allow UART wired
update through INFOC-OTP and INFO0 settings (see Apollo5 Family Security User's Guide). SBL
will then go into update mode in one of the two cases:

Encountering Boot error (e.g., invalid main image)
GPIO Override (configured through INFOC-OTP)

The host needs to be connected to the UART’s pins as configured in Info0’s UART configura-
tions, and the host initiates the communication within a short time window, which is also con-
figured in Info0.

The script uart_wired_update.py is designed to emulate the host side functions when using
the UART as the wired interface. It can be used during development to test the UART wired
update features, and to program the Apollo5 device while the debugger is disabled. Usage
information for uart_wired_update.py appears below:

$ python uart_wired_update.py --help

\ambiqsuite\tools\apollo510_scripts>python uart_wired_update.py -h

usage: uart_wired_update.py [-h] [-b BAUD] [--raw RAW] [-f BINFILE] [-o OTADESC]
 [-r {0,1,2}] [-a {0,1,-1}] port

UART Wired Update Host for Apollo5

positional arguments:

 port Serial COMx Port

optional arguments:

 -h, --help show this help message and exit
 -b BAUD Baud Rate (default is 115200)
 --raw RAW Binary file for raw message
 -f BINFILE Binary file to program into the target device
 -o OTADESC OTA Descriptor Page address (hex) - (Default is 0xFE000) - enter
 0xFFFFFFFF to instruct SBL to skip OTA
 -r {0,1,2} Should it send reset command after image download? (0 = no reset,
 1 = POI, 2 = POR) (default is 1)
 -a {0,1,-1} Should it send abort command? (0 = abort, 1 = abort and quit, -1 = no
 abort) (default is -1)

Apollo5 Family OEM Provisioning Tools User’s Guide UART Wired Update

@ambiq | all rights reserved 47 A-SOCAP5-UGGA03EN v1.0

Example usage: Downloading an application using the wired download protocol.

python uart_wired_update.py -b 115200 COM3 -o 0xFFFFFFFF -r 0 -f
application_wired.bin

Example usage: Downloading an OTA image of an application binary using the wired protocol.

python uart_wired_update.py -b 115200 COM3 -r 0 -f
application_wired_ota.bin

9.1 Upgrading Multiple Images in One Step

SBL supports upgrading multiple images in a single upgrade cycle using multiple
entries in the OTA Descriptor.

UART Wired Update scripts can be used to achieve the same. The script is run mul-
tiple times, once for each image. The key here is that OTA Descriptor is to be set
only in the first invocation, and reset is to be issued only for the last one.

The example below shows upgrading isolated data segments and a main image
(all considered nonsecure main images generated as in Section 6.1.1 Input Parame-
ters on page 30) together using uart_wired_update.py:

First image (also programs the OTA Descriptor, and does not reset the device):

python uart_wired_update.py -b 115200 COM<X> -f
img1_nonsecure_wire.bin --r 0

Second image (does not program the OTA Descriptor or reset the device):

python uart_wired_update.py -b 115200 COM<X> -f
img2_nonsecure_wire.bin --r 0 -o 0xFFFFFFFF

Third image (does not program the OTA Descriptor but resets the device to initiate
the processing of all three downloaded images):

python uart_wired_update.py -b 115200 COM<X> -f
img3_nonsecure_wire.bin --r 1 -o 0xFFFFFFFF

9.2 Upgrading Large Binary (Using --wired-chunk-size
feature)
SBL uses DTCM memory for local reassembly and processing of wired update
messages to ensure only validated images are written to MRAM. The SBL reserves a
fixed amount of memory for its own operation, reducing the total amount of DTCM
available for wired updates. User applications may also require some portions of
DTCM to remain intact, further limiting the available space for updates. To allow for
wired downloads greater than the size of the available DTCM, the wired download

Apollo5 Family OEM Provisioning Tools User’s Guide UART Wired Update

@ambiq | all rights reserved 48 A-SOCAP5-UGGA03EN v1.0

procedure can be made to download a large image in smaller chunks using the --
wire-chunk-size option.

To split a wired download into sections, you can specify the --wire-chunk-size
option in the wired download configuration file specifying the maximum number
of bytes available in the Apollo5 MCU (the maximum block size). The
create_cust_image_blob.py script will then automatically split the OTA image
into a series of Wired Download images wrapped into a single binary. You can then
download this binary to the Apollo5 device using the uart_wired_update.py
script as normal. The script will detect that the wired update image is composed of
multiple pieces and performs the download accordingly.

49 A-SOCAP5-UGGA03EN v1.0

SECTION

10 Wired Download Procedure

The standard use of wired download images is to allow a binary image to be programmed to a
device using a method other than direct programming using the Serial Wire Debug (SWD). This
can be useful when the SWD interface is either disabled or physically inaccessible. The basic
procedure for downloading a binary to the Apollo5 memory using the wired download option
is as follows:

1. Use create_cust_image_blob.py to wrap the binary (shown here as “application.bin”) into
a wired download image. Here, the configuration input file “wired.ini” contains information
about where the application binary should be downloaded.

python create_cust_image_blob.py -c wired.ini --app_file
application.bin --output application_wired.bin

2. Use the resulting application_wired.bin file is then transferred using the
uart_wired_update.py script to load the application into the Apollo5 memory. This will
place a copy of application.bin directly into the Apollo5 memory at the address specified
in wired.ini configuration file.

10.1 Using Wired Download for OTA

A common use of the “wired download” format is to program a firmware OTA
image into a temporary location in the Apollo5 memory, and then have the SBL
validate it and move it to its final location. Some reasons you might favor this
approach over the previous approach include:

You are using a secure device, and you need to install a matching content certif-
icate alongside your application binary. (OTA files allow the inclusion of con-
tent certificates)

You want the binary data to be encrypted during the download portion.

Apollo5 Family OEM Provisioning Tools User’s Guide Wired Download Procedure

@ambiq | all rights reserved 50 A-SOCAP5-UGGA03EN v1.0

You want the binary data to be authenticated by the SBL before being installed.
For most wired download OTA operations, you can use the following proce-
dure:

1. Use create_cust_image_blob.py to wrap an application binary into an OTA
blob. Here, firmware.ini contains the relevant settings for generating the OTA
image, and command line options are used to set the input and output binary
names.

python create_cust_image_blob.py -c firmware.ini --app_file
application.bin --output application_ota.bin

2. Use create_cust_image_blob.py a second time to wrap the OTA image into a
wired download image. Here, the wired.ini file would need to set the “ota”
option so the SBL can properly process the data.

python create_cust_image_blob.py -c wired.ini --app_file
application_ota.bin --output application_ota_wired.bin

3. Use the uart_wired_update.py script to load application_ota_wired.bin into
the Apollo5 memory and begin the firmware update process.

Ambiq SBL performs all the validations of the image in the DTCM memory before
programming to MRAM. This inherently means that the max size for the image that
can be downloaded in one go is limited to the available memory to SBL. If you
need to download a particularly large image, you can use the --wired_chunk_size
argument to split the download into multiple pieces. In this case, the bootloader
will perform a series of “wired download” operations, each individually verified
until the OTA image is fully constructed in the Apollo5 MRAM.

51 A-SOCAP5-UGGA03EN v1.0

SECTION

11 Appendix A: create_info0.py
options

The create_info0.py script is driven by command line arguments and/or config file (.ini) file
keyword options. There is an extensive list of options. The table below lists all the options that
can be supplied to the create_info0.py script.

The .ini keywords are used in the config file to specify the various options are based register/
field names defined the Info0 Register documents (minus the INFO0, or INFO0_OTP prefix).
Details of each field and its use can be found in the register documentation.

Fields with a * are subfields of the previous full 32-bit word field that precedes the * grouping.
The options can be specified either as the single full 32-bit word value or using the individual
sub fields of the word. The .ini file is processed in sequential order and the last processed value
for a field/subfield will take precedence (if there is an overlap or duplication). Command line
options specified will take precedence over the same options specified in the config file.

Table 11-1: create_info0.py Options

Cmd Line Args .ini keyword (config files) Values (32-bit unless specified)1

--valid VALID 1 = Valid (default) (valid sig w/data)
2 = Invalid (invalid sig, data all 0s)

--version SECURITY_VERSION_VERSION
--main MAINPTR_ADDRESS Default = 0x00410000
--cchain CERTCHAINPTR_ADDRESS
--wTO WIRED_TIMEOUT_TIMEOUT Default = 2000 (millisecond)
--u0 SECURITY_WIRED_IFC_CFG0
--u1 SECURITY_WIRED_IFC_CFG1
--u2 SECURITY_WIRED_IFC_CFG2
--u3 SECURITY_WIRED_IFC_CFG3
--u4 SECURITY_WIRED_IFC_CFG4
--u5 SECURITY_WIRED_IFC_CFG5
--sdcert SBR_SDCERT Default = 0x007FF400
--rma SECURITY_RMAOVERRIDE_OVERRIDE 2=enabled, 5=disabled (default = 2)
--sresv SECURITY_SRAM_RESV_SRAM_RESV
--rcvyCtl MRAM_RCVY_CTRL
 --rcvyEN * MRAM_RCVY_CTRL_MRAM_RCVY_EN
 --progGPIO * MRAM_RCVY_CTRL_GPIO_RCVY_INPROGRESS

Apollo5 Family OEM Provisioning Tools User’s Guide Appendix A: create_info0.py options

@ambiq | all rights reserved 52 A-SOCAP5-UGGA03EN v1.0

 --emmcPart * MRAM_RCVY_CTRL_EMMC_PARTITION
 --wdtEn * MRAM_RCVY_CTRL_WD_EN
 --rcvyPol * MRAM_RCVY_CTRL_GPIO_CTRL_POL
 --rcvyPin * MRAM_RCVY_CTRL_GPIO_CTRL_PIN
 --rcvyRbt * MRAM_RCVY_CTRL_APP_RCVY_REBOOT
 --rcvyTyp * MRAM_RCVY_CTRL_NV_RCVY_TYPE
 --rcvyModNum * MRAM_RCVY_CTRL_NV_MODULE_NUM
 --rcvyWire * MRAM_RCVY_CTRL_WIRED_RCVY_EN
 --rcvyAppEN * MRAM_RCVY_CTRL_APP_RCVY_EN
--meta NV_METADATA_OFFSET_META_OFFSET
--pwrRstCfg NV_PWR_RESET_CFG
 --jedecRst * NV_PWR_RESET_CFG_JEDEC_RESET
 --pwrRstPol * NV_PWR_RESET_CFG_RESET_POL
 --pwrPol * NV_PWR_RESET_CFG_PWR_POL
 --pwrDlyUnt * NV_PWR_RESET_CFG_PWR_DLY_UNITS
 --pwrDly * NV_PWR_RESET_CFG_RESET_DLY
--nvPin NV_PIN_NUMS
 --nvCEPin * NV_PIN_NUMS_CE_PIN
 --nvRstPin * NV_PIN_NUMS_RESET_PIN
 --nvPwrPin * NV_PIN_NUMS_PWR_PIN
--cmdPinCfg NV_CE_CMD_PINCFG_CE_CMD_PINCGF
 --clkPinCfg * NV_CLK_PINCFG_CLK_PINCGF
 --dataPinCfg * NV_DATA_PINCFG_DATA_PINCFG
 --dqsPinCfg * NV_DQS_PINCFG_DQS_PINCGF
--nv0 NV_CONFIG0_CONFIG0
--nv1 NV_CONFIG0_CONFIG1
--nv2 NV_CONFIG0_CONFIG2
--nv3 NV_CONFIG0_CONFIG3
--nvOpt NV_OPTIONS
 --emmcWidth * NV_OPTIONS_EMMC_BUS_WIDTH
 --emmcVolt * NV_OPTIONS_EMMC_VOLTAGE
 --mspiPadSet * NV_OPTIONS_MSPI_PADSET1
 --mspiD4Clk * NV_OPTIONS_MSPI_D4CLK
 --mspiRdClkSel * NV_OPTIONS_MSPI_READ_CLKSEL
 --mspiWidth * NV_OPTIONS_MSPI_WIDTHS
 --mspiPreClkSel * NV_OPTIONS_MSPI_PRECMD_CLKSEL
 --mspiPreCtl * NV_OPTIONS_MSPI_PRECMD_CLKSEL
 --mspiRdCmd * NV_OPTIONS_MSPI_READCMD
--preCMDs NV_MSPI_PRECMDS
 --preCMD1 * NV_MSPI_PRECMDS_PCMD0
 --preCMD2 * NV_MSPI_PRECMDS_PCMD1
 --preCMD3 * NV_MSPI_PRECMDS_PCMD2
 --preCMD4 * NV_MSPI_PRECMDS_PCMD3
--retryWD MRAM_RCV_RETRIES_TIMES
 --maxRetry * MRAM_RCV_RETRIES_TIMES_MAX_RETRIES
 --minRetryTm * MRAM_RCV_RETRIES_TIMES_MIN_RETRY_TIME
 --maxRetryTm * MRAM_RCV_RETRIES_TIMES_MAX_RETRY_TIME
--info0Cfg INFO0CFG File/pathname to Info0 Config file
--loglevel LOG_LEVEL 0-5

1 All fields default to 0x0 unless specified.

Table 11-1: create_info0.py Options (Continued)

Cmd Line Args .ini keyword (config files) Values (32-bit unless specified)1

© 2025 Ambiq Micro, Inc. All rights reserved.
6500 River Place Boulevard, Building 7, Suite 200, Austin, TX 78730

www.ambiq.com
sales@ambiq.com
+1 512. 879.2850

A-SOCAP5-UGGA03EN v1.0
May 2025

	Introduction
	1.1 System Requirements
	1.2 Terminology

	Keys
	2.1 Key Gen Utility
	2.1.1 Input Parameters
	2.1.2 Key Gen Command
	2.2 Signing Server Plugin Support
	1. Plugin Framework:
	a. Located in cert_gen_utils/plugin/signature_interface.py.
	b. Default plugin (LocalInterface) supports local signing; configurable for remote signing (e.g., via HTTPInterface).
	c. Plugins must implement sign(keyIdx: str, data: bytes) and can include custom configuration files.
	2. Configuration Files:
	a. Includes essential fields like auth-key, signature-plugin-path, and signature- plugin-cfg.
	b. Example entries provided for quick integration.
	3. Simulated HSM Example:
	a. Provided in cert_gen_utils/plugin_reference/sign_server.py.
	b. Enables remote signing via Flask-based server.
	c. Configurable through the am_remote_keys_plugin.cfg file.
	d. Supports signing and verification operations using RSA encryption.

	OEM Provisioning
	Figure 3-1 : OEM Plain (Unencrypted) Provisioning Data Blob Generation
	Figure 3-2 : OEM Encrypted Provisioning Data Blob Generation
	3.1 OEM Key Generation
	3.1.1 Input Parameters
	3.1.2 Command

	3.2 OEM Asset Gen Util
	3.2.1 Input Parameters
	3.2.2 Command

	3.3 HBK Gen Utility
	3.3.1 Input Parameters
	3.3.2 Command
	3.4 OEM Key Request Utility
	3.4.1 Input Parameters
	3.4.2 Command(s)

	3.5 OEM Asset Packaging Utility
	3.5.1 Input Parameters
	3.5.2 Command(s)

	3.6 OEM Provisioning Data Gen Util
	3.6.1 Input Parameters
	3.6.2 Command

	3.7 OEM Provisioning Tool (OPT)
	3.7.1 Combined OPT Binary

	Customer Infospace Provisioning (INFO0)
	4.1 INFO0 - MRAM and OTP
	4.2 Info0 Generation

	4.3 Info0 Programming

	OEM Image Certificate Generation
	Figure 5-1 : OEM Certificate Generation
	5.1 Prerequisite
	5.2 Note on the Tool Output Files
	5.3 OEM Root Certificate Gen
	5.3.1 Input Parameters
	5.3.2 Command

	5.4 OEM Key Certificate Gen
	5.4.1 Input Parameters
	5.4.2 Command

	5.5 OEM Content Certificate Gen
	5.5.1 Input Parameters
	5.5.2 Command

	OEM Debug Certificate Generation
	Figure 6-1 : OEM Debug Certificates
	6.1 OEM Debug-Key Certificate Gen
	6.1.1 Input Parameters
	6.1.2 Command

	6.2 OEM Debug Enabler Certificate Gen
	6.2.1 Input Parameters
	6.2.2 Command

	6.3 OEM Debug Developer Certificate Gen
	6.3.1 Input Parameters
	6.3.2 Command

	Image Generation for Apollo5 SBL
	7.1 Overview of Image Types
	7.1.1 Firmware
	Figure 7-1 : Firmware

	7.1.2 Firmware OTA
	Figure 7-2 : Firmware OTA

	7.1.3 Wired Download
	Figure 7-3 : Wired Download

	7.1.4 Wired OTA
	Figure 7-4 : Wired OTA
	Figure 7-5 : Wired OTA - Step 2

	7.1.5 Summary
	Figure 7-6 : Relationship Summary

	7.2 Image Generation Scripts
	7.2.1 Basic Script Usage
	7.2.2 Example Configuration File
	7.2.3 Universal Security Options

	7.3 Generating Specific Image Types
	7.3.1 Firmware OTA Images
	7.3.2 Wired Download Images
	7.3.3 Info0 Update Images
	7.3.4 OEM Certificate Chain Update
	7.3.5 Key Revocation Images

	Downloading Images and Initiating Updates
	8.1 SWD Download Using JLINK
	8.2 Wired Update
	8.3 Over the Air Updates

	UART Wired Update
	9.1 Upgrading Multiple Images in One Step
	9.2 Upgrading Large Binary (Using --wired-chunk-size feature)

	Wired Download Procedure
	1. Use create_cust_image_blob.py to wrap the binary (shown here as “application.bin”) into a wired download image. Here, the configuration input file “wired.ini” contains information about where the application binary should be downloaded.
	2. Use the resulting application_wired.bin file is then transferred using the uart_wired_update.py script to load the application into the Apollo5 memory. This will place a copy of application.bin directly into the Apollo5 memory at the address speci...
	10.1 Using Wired Download for OTA
	1. Use create_cust_image_blob.py to wrap an application binary into an OTA blob. Here, firmware.ini contains the relevant settings for generating the OTA image, and command line options are used to set the input and output binary names.
	2. Use create_cust_image_blob.py a second time to wrap the OTA image into a wired download image. Here, the wired.ini file would need to set the “ota” option so the SBL can properly process the data.
	3. Use the uart_wired_update.py script to load application_ota_wired.bin into the Apollo5 memory and begin the firmware update process.

	Appendix A: create_info0.py options

