
NEMA®| dc MiP Panels Configuration

Application Note

Version v23.10

Part Number: D-APN-MIP

December 3, 2023

Disclaimer

This document is written in good faith with the intent to assist the readers in the use of the product.
Circuit diagrams and other information relating to Think Silicon S.A products are included as
a means of illustrating typical applications. Although the information has been checked and is
believed to be accurate, no responsibility is assumed for inaccuracies. Information contained in this
document is subject to continuous improvements and developments.

Think Silicon S.A products are not designed, intended, authorized or warranted for use in any life
support or other application where product failure could cause or contribute to personal injury or
severe property damage. Any and all such uses without prior written approval of Think Silicon S.A.
will be fully at the risk of the customer.

Think Silicon S.A. disclaims and excludes any and all warranties, including without limitation any
and all implied warranties of merchantability, fitness for a particular purpose, title, and infringement
and the like, and any and all warranties arising from any course or dealing or usage of trade.

This document may not be copied, reproduced, or transmitted to others in any manner. Nor may
any use of information in this document be made, except for the specific purposes for which it is
transmitted to the recipient, without the prior written consent of Think Silicon S.A. This specification
is subject to change at anytime without notice.

Think Silicon S.A. is not responsible for any errors contained herein. In no event shall Think Silicon
S.A. be liable for any direct, indirect, incidental, special, punitive, or consequential damages; or
for loss of data, profits, savings or revenues of any kind; regardless of the form of action, whether
based on contract; tort; negligence of Think Silicon S.A or others; strict liability; breach of warranty;
or otherwise; whether or not any remedy of buyers is held to have failed of its essential purpose,
and whether or not Think Silicon S.A. has been advised of the possibility of such damages.

COPYRIGHT NOTICE

NO PART OF THIS SPECIFICATION MAY BE REPRODUCED IN ANY FORM OR MEANS,
WITHOUT THE PRIOR WRITTEN CONSENT OF THINK SILICON S.A.

Questions or comments may be directed to:
Think Silicon S.A
Suite B8
Patras Science Park
Rion Achaias 26504, Greece
web: http://www.think-silicon.com
email:info@think-silicon.com
Tel: +30 2610 911543
Fax: +30 2610 911544

NEMA| dc MiP Panels Configuration

Contents

Overview...4

Configure format_clk frequency...5

Setting Panel Timing configuration..6
Vertical Signal Timing Configuration.. 7
Horizontal Signal Timing Configuration.. 9

Configuration of NemaDC (NemaDC output, layers and MiP interface)..............12

v23.10 Confidential http://www.think-silicon.com iii

 1 Overview

1 Overview

This application note aims to provide guidance in the configuration of NEMA®| dc, so that
it can work with MiP (Memory in Pixel) panels that makes use of the parallel interface.
Memory in Pixel panels (mostly JDI and Sharp panels), require the display controller to
drive display timing signals, where the relation of timings is quite strict.
Since some MiP Sharp panels bring the same interface, Table 1 captures the differences
between JD panels and Sharp panels regarding the naming of signals:

Table 1: JDI to MIP signal name correspondence

Japan Display
Inc

Sharp Description

XRST INTB Reset signal for the horizontal and vertical
driver

VST GSP Start signal for the vertical driver

VCK GCK Shift clock for the vertical driver

ENB GEN Write enable signal for the pixel memory

HST BSP Start signal for the horizontal driver

HCK BCK Shift clock for the horizontal driver

R1 R[0] Red image data (odd pixels)

R2 R[1] Red image data (even pixels)

G1 G[0] Green image data (odd pixels)

G2 G[1] Green image data (even pixels)

B1 B[0] Blue image data (odd pixels)

B2 B[1] Blue image data (even pixels)

To program NEMA®| dc to drive the MiP panel, you have to go through the timing dia-
grams of the panel documentation and export all the necessary timing information. Pro-
gramming of NEMA®| dc must go from the configuration of input pll_clk to its software
configuration.
This guide makes use of the Sharp LS014B7DD01 display manual as a use case. All
values that were extracted are the typical values, where Min and Max were taken into
consideration, in case there is no typical value.

4 http://www.think-silicon.com v23.10 Confidential

NEMA| dc MiP Panels Configuration

2 Configure format_clk frequency

As a first step, define the format_clk frequency. To meet the typical times of the manual
of the display, set the format_clk frequency to match 4-times of the BCK frequency (or
half of the high level width or low level width of the BCK)

Attention:
The pixel_clk/format_clk ratio should be greater than 2:1. It can be any ratio
with pixel_clk greater than format_clk and is irrelevant of the color format of the
layer.1

Due to the architecture of the interface and NEMA®| dc pipeline, the faster the
pixel_clk is, the faster GCK (or VCK) transition, in case of fast forward feature
(partial update).

Table 2: BCK values

BCK Typical

fBCK BCK frequency 0.746 MHz

thwBCK High Level Width 670 ns

tlwBCK Low Level Width 670 ns

format_clk input frequency = fBCK * 4 = 2.984 MHz
format_clk input period = 335 ns

1 Each layer fetches data from memory through the DMA, which is running with
HCLK frequency. In this case, you have to ensure that the throughput of the layer
is able to provide sufficient pixel data to the internal pipeline of NEMA®| dc, which
consumes 1 pixel/pixel_clk.

v23.10 Confidential http://www.think-silicon.com 5

 3 Setting Panel Timing configuration

3 Setting Panel Timing configuration

Since the MiP parallel interface panel requires specific timings, we must extract and pass
the necessary information to NEMA®| dc.
For this interface, a struct is introduced that holds the configuration of the panel and
consists of the following variables:

typedef struct __MiP_display_config_t {
 int resx; /** Panel Horizontal Resolution */
 int resy; /** Panel Vertical Resolution */
 int XRST_INTB_delay ; /** Delay inserted prior of XRST or INTB in multiples
 of format_clk */
 int XRST_INTB_width ; /** Width of High state of XRST or INTB in multiples
 of format_clk */
 int VST_GSP_delay ; /** Delay inserted prior of VST or GSP in multiples
 of format_clk */
 int VST_GSP_width ; /** Width of High state of VST or GSP in multiples
 of format_clk */
 int VCK_GCK_delay ; /** Delay inserted prior of VCK or GCK in multiples
 of format_clk */
 int VCK_GCK_width ; /** Width of High state of VCK or GCK in multiples
 of format_clk */
 int VCK_GCK_closing_pulses ; /** Number of VCK or GCK pulses without ENB or GEN
 signal at the end of frame */
 int HST_BSP_delay ; /** Delay inserted prior of HST or BSP in multiples
 of format_clk */
 int HST_BSP_width ; /** Width of High state of HST or BSP in multiples
 of format_clk */
 int HCK_BCK_data_start ; /** The HCK or BCK cycle the pixel data should start
 at */
 int ENB_GEN_delay ; /** Delay inserted prior of ENB or GEN in multiples
 of format_clk */
 int ENB_GEN_width ; /** Width of High state of ENB or GEN in multiples
 of format_clk */
} MiP_display_config_t;

As a first step, you must define the values for Horizontal and Vertical Resolution of the
panel. These values also define the NEMA®| dc frame resolution.

Table 3: Pixel Values from LS014B7DD01 manual

Pixels Values defined on
software

Horizontal Pixel Number 280 resx = 280

Vertical Pixel Number 280 resy = 280

6 http://www.think-silicon.com v23.10 Confidential

NEMA| dc MiP Panels Configuration

The next step is to define the INTB assertion point and high width. Since INTB is the
reset signal, you can have it as the base of the vertical timing's setup. In that case,
XRST_INTB_delay can be set to 1. A zero value is not acceptable.
Also INTB high width (thwINTB) can be configured to match the number of GCK pulse at
the falling edge of INTB. From the vertical signal timing diagram (upcoming figure), we
can see that GCK#566 is the pulse where INTB falling edge happens. XRST_INTB_width
in this case must be configured with value 566.

XRST_INTB_delay = 1
XRST_INTB_width = 566

3.1 Vertical Signal Timing Configuration
The next task that needs to take place is the configuration of the Vertical Signal Timing.

LS014B7DD01 Vertical Timing

INTB

GSP

GCK

GEN

Data MBS1 LSB1 ... LSB280 MBS1

thsINTB

thsGSP tlsGSP

FP Y Blanking Y

568 1 2 3 561 562 563 564 565 566 567 568 1 2 3

Figure 1: LS014B7DD01 Vertical Timing

As a first step you must configure GSP assertion point and high width.

Table 4: Timings from LS014B7DD01 Manual

Time (ns)

Min Typical Max

thsINTB Timing from Rising INTB till Rising of GSP 23760 24120 24480

thsGSP GSP set-up time high level 47520 48240 48960

tlsGSP GSP set-up time low level 47520 48240 48960

Attention: Zero positions of INTB and GSP match.

In the case of GSP assertion point configuration, we must set the correct value to
VST_GSP_delay. From the above mentioned table, the typical value of thsINTB is

v23.10 Confidential http://www.think-silicon.com 7

 3 Setting Panel Timing configuration

24120ns. The value to be set to VST_GSP_delay is computed from the following expres-
sion:

VST_GSP_delay = thsINTB/format_clk_period + XRST_INTB_delay = (24120/335) + 1
VST_GSP_delay = 72 + XRST_INTB_delay

For the GSP high width, we have to calculate its value since the manual describes only
the setup timings in respect to GCK. By combining thsGSP & tlsGSP & High Level Width
of GCK, you have the GSP width that you must set to VST_GSP_width.

VST_GSP_width = (thsGSP + thwGCK + tlwGCK - tlsGSP) / 335 = 192960/335
VST_GSP_delay = 576

For the GCK signal, you must also configure the delay and high or low width, since these
two values always match. You must also set the number of GCK "closing pulses", meaning
the needed pulses from last GEN signal.

Table 5: Timings from LS014B7DD01 Manual

Time (ns)

Min Typical Max

thwGCK High Level Width of GCK 95040 96480 97920

tlwGCK Low Level Width 95040 96480 97920

Attention: Zero positions of INTB, GSP and GCK match.

In the case of GCK delay, the value must be calculated from the combination of thsINTB
and thsGSP (see Figure 1). The value must be placed on VCK_GCK_delay.

VCK_GCK_delay = (thsINTB + thsGSP)/format_clk_period + XRST_INTB_delay
VCK_GCK_delay = ((24120+48240)/335) + XRST_INTB_delay
VCK_GCK_delay = 216 + XRST_INTB_delay

For the GCK width to take effect, VCK_GCK_width must be configured.

VCK_GCK_width = thwGCK/format_clk_period = 96480 / 335
VCK_GCK_width = 288

GCK "closing pulses" is the last value to configure for the GCK signal. From the Vertical
Timing diagram, the following GCK pulses after the last GEN signal pulse (GCK #563,
#564, #565, #566, #567, #568) are needed for configuring the closing pulses. The
number of extra pulses (in this case 6) must be placed on VCK_GCK_closing_pulses.

VCK_GCK_closing_pulses = 6

8 http://www.think-silicon.com v23.10 Confidential

NEMA| dc MiP Panels Configuration

3.2 Horizontal Signal Timing Configuration
The next step is the configuration on Horizontal Signal Timing.

LS014B7DD01 Horizontal Timing (RGB data)

format_clk

BCK

R[0] R1 R3 R5 ... R279 R1

R[1] R2 R4 R6 ... R280 R2

G[0] G1 G3 G5 ... R279 G1

G[1] G2 G4 G6 ... R280 G2

B[0] B1 B3 B5 ... R279 B1

B[1] B2 B4 B6 ... R280 B2

FP X Blanking X BP X

143 144 1 2 3 141 142 143 144 1

Figure 2: LS014B7DD01 Horizontal Timing (RGB data)

As it was mentioned in the first section, high and low width of BCK is controlled by the
format_clk period, and the number of BCKs is dependent on the width of GCK.
The next signal for configuration is the GEN signal line:

Table 6: Timings from LS014B7DD01 Manual

Time (ns)

Min Typical Max

thwGEN GEN High width 29000 - -

tsGCK1 GCK set-up time 19100 - -

thGCK1 GCK hold time 19100 - -

In the case of GEN assertion point and width, since these two only have minimum values
to reach, the configuration values can vary. As an example, the chosen width is a little
over the minimum width of GEN signal high width.

GEN High width value must be placed in ENB_GEN_width
ENB_GEN_width = (thwGEN + 1000ns)/335=(29000+1000)/335=89.6
ENB_GEN_width = 90

tsGCK1 and thGCK1 values must be calculated to configure GEN assertion point. GEN
assertion point is calculated based on the width of GEN, GCK and for GEN high state
to be in the middle of GCK pulse. Offset of the rising edge of GEN signal counts format
clock cycles from the rising (or the falling) edge of the GCK signal and must be applied
in the ENB_GEN_delay.

v23.10 Confidential http://www.think-silicon.com 9

 3 Setting Panel Timing configuration

Since VCK_GCK_width and ENB_GEN_width express the width of the equivalent signals
in terms of format_clk periods, the delay of GEN can be calculated based on them.

ENB_GEN_delay = (VCK_GCK_width-ENB_GEN_width)/2=(288-90)/2=99
ENB_GEN_delay=(VCK_GCK_width-ENB_GEN_width)/2

In the above described example 99*format_clk=33165ns covers the minimum values of
tsGCK1 and thGCK1.
In the case of BSP assertion point and width, the following parameters must be config-
ured to match the timings of the display specification. For the assertion point of BSP,
HST_BSP_delay must be configured, while setting HST_BSP_width controls the high level
width of BSP.

Table 7: Timings from LS014B7DD01 Manual

Time (ns)

Min Typical Max

tsGCK2 BSP delay time from GCK clock pulse
change

0 335 -

thsBSP BSP data set-up time high level 330 335 340

tlsBSP BSP data set-up time low level 330 335 340

In order to meet the specification of thsBSP and tlsBSP in this example, given the position
of GCK and BCK transition, the delay of BSP (tsGCK2) has to be equal to 670ns.

HST_BSP_delay = tsGCK2/335=670/335
HST_BSP_delay=2

In order to calculate the width of BSP, the following equation must be used:

HST_BSP_width=(thsBSP + BCK clock period - tlsBSP)/335
HST_BSP_width=4

Last thing needed to configure is to set the BCK pulse number at the time where the
pixel data are latched on the RGB lines. From the LS014B7DD01 Manual this seems to
be on the pulse of BCK #1.

HCK_BCK_data_start=1

Wrapping up, here is the complete struct that holds the timing configuration of
LS014B7DD01 panel and the nemadc_set_mip_panel_parameters function that takes

10 http://www.think-silicon.com v23.10 Confidential

NEMA| dc MiP Panels Configuration

as arguments the struct that holds the configuration of the panel, in order to set the
needed parameters in the MiP interface.

MiP_display_config_t LS014B7DD01;

LS014B7DD01.resx = 280;
LS014B7DD01.resy = 280;
LS014B7DD01.XRST_INTB_delay = 1;
LS014B7DD01.XRST_INTB_width = 566;
LS014B7DD01.VST_GSP_delay = 72 + LS014B7DD01.XRST_INTB_delay;
LS014B7DD01.VST_GSP_width = 576;
LS014B7DD01.VCK_GCK_delay = 216 + LS014B7DD01.XRST_INTB_delay;
LS014B7DD01.VCK_GCK_width = 288;
LS014B7DD01.VCK_GCK_closing_pulses = 6;
LS014B7DD01.HST_BSP_delay = 2;
LS014B7DD01.HST_BSP_width = 4;
LS014B7DD01.HCK_BCK_data_start = 1;
LS014B7DD01.ENB_GEN_width = 90;
LS014B7DD01.ENB_GEN_delay = (LS014B7DD01.VCK_GCK_width-LS014B7DD01.ENB_GEN_width)/2;

nemadc_set_mip_panel_parameters(&LS014B7DD01);

Attention: The nemadc_set_mip_panel_parameters function and timing config-
uration setup of the panel need to run only once in the beginning of the program.

v23.10 Confidential http://www.think-silicon.com 11

4 Configuration of NemaDC (NemaDC output, layers and MiP interface)
4 Configuration of NemaDC (NemaDC output, layers and MiP
interface)

Setting NemaDC output frame resolution and layers configuration in the case of MiP
interface is handled within a new incorporated function that is required when working
with MiP interface. In the following code example, you can observe that nemadc_timing
and nemadc_set_layer functions are eliminated.
As indicated earlier, the nemadc_mip_setup function is needed for configuring the MiP
interface, the setup of NemaDC output and layers. Also, an extra functionality that this
function provides is the configuration of MiP interface to transmit the frame pixel data
in up to 16 partial regions.

void nemadc_mip_setup(int layer0_active, nemadc_layer_t *layer0,
 int layer1_active, nemadc_layer_t *layer1,
 int layer2_active, nemadc_layer_t *layer2,
 int layer3_active, nemadc_layer_t *layer3,
 int partial_regions, ...);

Attention: The nemadc_mip_setup function is required to be called prior a single
frame update.

The nemadc_mip_setup function takes as arguments the structs of the layers and an
indication for each layer (0 or 1) if the given layer must be active on that frame.
Also, there is an argument to indicate the number of partial regions needed to send on
the current frame update. This argument can vary from 0 (full frame update), up to 16.
The next arguments the function can accept are the partial start rows and partial end
rows in pairs of the needed partial regions. If the partial regions you are configuring are
more than the partial regions you indicate in the partial_regions argument, the extra
regions are ignored.
Partial Region Row Start of a partial region must be bigger than the Partial Region Row
End of the previous region.

12 http://www.think-silicon.com v23.10 Confidential

NEMA| dc MiP Panels Configuration

Example of full frame update with 2 active layers

Figure 3: Full frame update with 2 active layers

#define LAYER_ACTIVE 1
#define LAYER_INACTIVE 0

// Full frame update -> set partial regions to 0.
nemadc_mip_setup(LAYER_ACTIVE , &layer[0],
 LAYER_ACTIVE , &layer[1],

v23.10 Confidential http://www.think-silicon.com 13

4 Configuration of NemaDC (NemaDC output, layers and MiP interface)
 LAYER_INACTIVE, NULL,
 LAYER_INACTIVE, NULL,
 0);

Example with 3 partial regions update per frame with 2 active layers

Figure 4: Three partial regions update with 2 active layers

#define LAYER_ACTIVE 1
#define LAYER_INACTIVE 0
nemadc_mip_setup(LAYER_ACTIVE , &layer[0],
 LAYER_ACTIVE , &layer[1],
 LAYER_INACTIVE, &layer[2],
 LAYER_INACTIVE, &layer[3],
 3, // Partial regions
 25, 90,
 135, 158,
 203, 221
);

14 http://www.think-silicon.com v23.10 Confidential

NEMA| dc MiP Panels Configuration

Full code example with the use of the MiP Parallel interface
The following code example demonstrates the 3 partial regions update mentioned earlier
and gives the full configuration of NemaDC.
Assuming that PLL clock (input pll_clk to NemaDC Clock Divider) is configured to run at
38.86MHz and through software configuration of NemaDC's clock divider, the example
code is targeting to format_clk to be equal to 2.98MHz, while pixel_clk to be equal to
PLL clock.

#include "nema_dc.h"
#include "nema_dc_jdi.h"

MiP_display_config_t LS014B7DD01;

nemadc_layer_t layer[4] = {{0}};

main()
{
 int ret;

 //Initialize Nema|dc
 ret = nemadc_init();
 if (ret) return ret;

 LS014B7DD01.resx = 280;
 LS014B7DD01.resy = 280;
 LS014B7DD01.XRST_INTB_delay = 1;
 LS014B7DD01.XRST_INTB_width = 566;
 LS014B7DD01.VST_GSP_delay = LS014B7DD01.XRST_INTB_delay + 72;
 LS014B7DD01.VST_GSP_width = 576;
 LS014B7DD01.VCK_GCK_delay = LS014B7DD01.XRST_INTB_delay + 216;
 LS014B7DD01.VCK_GCK_width = 288;
 LS014B7DD01.VCK_GCK_closing_pulses = 6;
 LS014B7DD01.ENB_GEN_width = 90;
 LS014B7DD01.ENB_GEN_delay = (LS014B7DD01.VCK_GCK_width - LS014B7DD01.EN►
B_GEN_width) / 2;
 LS014B7DD01.HST_BSP_delay = 2;
 LS014B7DD01.HST_BSP_width = 4;
 LS014B7DD01.HCK_BCK_data_start = 1;

 nemadc_clkdiv(13, 1, 4, 0); // pll_in clk = 38.86 MHz

 // Swap pixel_clk / format_clk on Clock Divider
 nemadc_reg_write(NEMADC_REG_CLKCTRL_CG, (NemaDC_clkctrl_cg_clk_swap |
NemaDC_clkctrl_cg_clk_en));

 layer[0].resx = 280;
 layer[0].resy = 280;
 layer[0].format = NEMADC_RGBA2222;
 layer[0].blendmode = NEMADC_BL_SRC;
 layer[0].stride = layer[0].resx;
 layer[0].alpha = 0xff;

v23.10 Confidential http://www.think-silicon.com 15

4 Configuration of NemaDC (NemaDC output, layers and MiP interface)
 layer[0].startx = 0;
 layer[0].starty = 0;
 layer[0].flipx_en = 0;
 layer[0].flipy_en = 0;
 layer[0].baseaddr_virt = BASE_OF_BG_WATCHFACE;
 layer[0].baseaddr_phys = (unsigned)tsi_virt2phys(BASE_OF_BG_WATCHFACE);

 layer[1].resx = 160;
 layer[1].resy = 160;
 layer[1].format = NEMADC_RGBA2222;
 layer[1].blendmode = NEMADC_BL_SRC;
 layer[1].stride = layer[1].resx;
 layer[1].alpha = 0xff;
 layer[1].startx = 60;
 layer[1].starty = 60;
 layer[1].flipx_en = 0;
 layer[1].flipy_en = 0;
 layer[1].baseaddr_virt = BASE_OF_SEC_LAYER;
 layer[1].baseaddr_phys = (unsigned)tsi_virt2phys(BASE_OF_SEC_LAYER);

 // Set NemaDC output Background color.
 nemadc_set_bgcolor(0x863094ff);

 // Set Panel Timing Configuration.
 nemadc_set_mip_panel_parameters(&LS014B7DD01);

 #define LAYER_ACTIVE 1
 #define LAYER_INACTIVE 0
 #define FRAME_END_INTERRUPT (1<<4)

 // Run for 10 frames.
 for (int i = 0; i < 10; ++i) {
 nemadc_reg_write(NEMADC_REG_INTERRUPT, FRAME_END_INTERRUPT);
 // Configure NemaDC to send for this frame.
 nemadc_mip_setup(LAYER_ACTIVE , &layer[0],
 LAYER_ACTIVE , &layer[1],
 LAYER_INACTIVE, &layer[2],
 LAYER_INACTIVE, &layer[3],
 3, // Partial regions
 25, 90,
 135, 158,
 203, 221
);

 // Single Frame Update.
 nemadc_set_mode(NEMADC_ONE_FRAME | NEMADC_MIP_IF | NEMADC_SCANDOUBLE);

 nemadc_wait_for_irq();

 nemadc_set_mode(0);
 }
}

16 http://www.think-silicon.com v23.10 Confidential

	Contents
	Overview
	Configure format_clk frequency
	Setting Panel Timing configuration
	Vertical Signal Timing Configuration
	Horizontal Signal Timing Configuration

	Configuration of NemaDC (NemaDC output, layers and MiP interface)

